Groupoids of Configurations of Lines

Jake Kettinger

Colorado State University
Speaking at the AMS 2025 Fall Eastern Sectional Meeting

25 October 2025

Background: Geproci

Definition

A finite set Z in \mathbb{P}^n_k is **geproci** if the projection \overline{Z} of Z from a general point P to a hyperplane $H = \mathbb{P}^{n-1}_k$ is a complete intersection in H.

Geproci stands for **ge**neral **pro**jection is a **co**mplete **i**ntersection. The only nontrivial examples known are for n=3. In this case a hyperplane is a plane. A reduced set of points in a plane is a complete intersection if it is the transverse intersection of two algebraic curves. For #Z=ab ($a\leq b$), Z is (a,b)-geproci if \overline{Z} is the intersection of a degree a curve and a degree b curve.

Background: k-Spreads in \mathbb{P}_F^n

Definition

Given a $k \geq 0$ and field F, a k-spread of \mathbb{P}_F^n is a set of mutually-skew k-planes that partition \mathbb{P}_F^n .

Spreads are known to exist for F= any finite field if and only if k+1 divides n+1, also and for k+1=(n+1)/2 for $F=\mathbb{R}$.

Spreads are instrumental for the proof that $\mathbb{P}^3_{\mathbb{F}_q}$ is geproci under $\mathbb{P}^3_{\overline{\mathbb{F}}_q}$. In this case, a spread is a partition of $\mathbb{P}^3_{\mathbb{F}_q}$ into lines.

The Hopf Fibration over \mathbb{R}

The Hopf fibration $H:S^3 \to S^2$ can yield a spread over $\mathbb{P}^3_{\mathbb{R}}.$

$$\begin{array}{ccc} S^3 & \stackrel{H}{\longrightarrow} & S^2 \\ \downarrow^A & & \downarrow^\cong \\ \mathbb{P}^3_{\mathbb{R}} & \stackrel{F}{\longrightarrow} & \mathbb{P}^1_{\mathbb{C}} \end{array}$$

Let $L_{a,b}$ denote the line joining the points (1,0,a,b) and (0,1,-b,a), and let L_{∞} denote the line joining (0,0,1,0) and (0,0,0,1). Then $\mathcal{S}=\{L_{a,b}:a,b\in\mathbb{R}\}\cup\{L_{\infty}\}$ is the spread yielded by the Hopf fibration. You can also use a similar method in positive characteristic to define a spread known as the **Hopf spread**.

Gorla's Construction

According to Gorla, it is possible to construct a spread of k-dimensional hyperplanes inside $\mathbb{P}^n_{\mathbb{F}_a}$ if and only if k+1 divides n+1.

Let $p(x) \in \mathbb{F}_q[x]$ be irreducible, monic, and degree k+1, and let P be its companion matrix. Then one can construct a spread of spaces of the form

$$\operatorname{rowsp}\underbrace{\begin{pmatrix} 0 & \cdots & 0 & \boxed{I_{k+1}} & A_1 & \cdots & A_j \end{pmatrix}}_{\stackrel{n+1}{k+1}} : A_i \in \mathbb{F}_q[P].$$

When k = 1 and n = 3, this construction is identical to the Hopf spread! But this also provides new examples of spreads in higher dimensions.

Maximal Partial Spreads

Note that a spread over $\mathbb{P}^3_{\mathbb{F}_q}$ comprises q^2+1 mutually-skew lines.

Definition

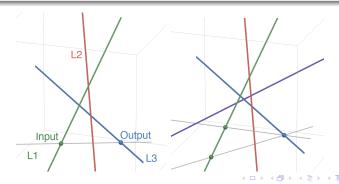
A partial spread of $\mathbb{P}^3_{\mathbb{F}_q}$ with deficiency d is a set of q^2+1-d mutually-skew lines. A **maximal partial spread** is a partial spread of positive deficiency that is not contained in any larger partial spread.

Maximal partial spreads are also instrumental to the study of geproci sets; in fact, given a maximal partial spread \mathcal{M} , the set $\mathbb{P}^3_{\mathbb{F}_q}\setminus \left(\bigcup_{L\in\mathcal{M}}L\right)$ is geproci.

Projecting a Line to a Line via a Line

Definition

Given three lines $L_1, L_2, L_3 \subseteq \mathbb{P}^3_k$ where $L_1 \cap L_2 = L_2 \cap L_3 = \emptyset$, we can define the function $\pi(L_1, L_2, L_3) : L_1 \to L_3$ as follows: take $p \in L_1$. Then there is a unique line T such that $p \in T$, $T \cap L_2 \neq \emptyset$, and $T \cap L_3 \neq \emptyset$. Then define $\pi(L_1, L_2, L_3)(p) = T \cap L_3$. This is the **projection** of L_1 to L_3 via L_2 .



Groupoids

Definition

A **groupoid** is a category \mathcal{G} where every morphism is invertible.

• For any object $G \in \mathcal{G}$, $\mathsf{Hom}_{\mathcal{G}}(G,G) = \mathsf{Aut}_{\mathcal{G}}(G)$ is a group.

 $Aut_{\mathcal{G}}(G)$ is a "group of the groupoid."

• Whenever $\mathsf{Hom}_\mathcal{G}(G_1,G_2) \neq \varnothing$, then $\mathsf{Aut}_\mathcal{G}(G_1) \cong \mathsf{Aut}_\mathcal{G}(G_2)$.

So when $\operatorname{Hom}_{\mathcal{G}}(G_1,G_2)\neq\varnothing$ for all $G_1,G_2\in\mathcal{G},\,\mathcal{G}$ induces only one group of the groupoid, up to isomorphism. Then it makes sense to say "the" group of the groupoid, $\operatorname{Aut}_{\mathcal{G}}$.

Groupoids of Lines

Theorem

Let \mathcal{L} be a set of lines in \mathbb{P}^3_F . Define Π to be the composition-closure of the set of functions $\{\pi(L_i,L_j,L_k):L_i,L_j,L_k\in\mathcal{L},L_i\cap L_j=L_j\cap L_k=\varnothing\}$. Then (\mathcal{L},Π) is a groupoid.

In this case, any group of the groupoid is a subgroup of $\operatorname{Aut}(\mathbb{P}^1_F)\cong\operatorname{PGL}(2,F)$.

What can we say about this groupoid and its corresponding group(s)? In characteristic 0, when is it finite versus infinite? When does $\operatorname{Aut}_{(\mathcal{L},\Pi)}(L)$ have finite orbits, or finitely many orbits? What is the relationship (if \exists) between $\operatorname{Aut}_{(\mathcal{L},\Pi)} \leq \operatorname{Aut}(\mathbb{P}^1)$ and $\operatorname{Aut}(\mathcal{L}) \leq \operatorname{Aut}(\mathbb{P}^3)$?

Ganger's Results

In her 2024 thesis, Ganger used the technique of **transversals** to prove the following theorem:

Theorem (Ganger Corollary 2.5)

The group of the groupoid for the Hopf spread induced by the degree-2 field extension $\mathbb{F}_{q^2}/\mathbb{F}_q$ over a finite field is isomorphic to the quotient $\mathbb{F}_{q^2}^*/\mathbb{F}_q^*\cong C_{q+1}$.

Definition

Given a set of lines \mathcal{L} in \mathbb{P}^3_F , a **transversal** is a line T in $\mathbb{P}^3_{\overline{F}}$ such that $T \cap \overline{L} \neq \emptyset$ for all $L \in \mathcal{L}$.

The Hopf spread has exactly two transversals T_1 , T_2 for any finite field. The intersection of transversal with a line $L \in \mathcal{S}$ is a fixed point of $\operatorname{Aut}_{(\mathcal{S},\Pi)}(L)$!

Representing $Aut_{\mathcal{G}} \leq PGL(2, F)$

Let $U = \overline{u_0 u_1}$, $V = \overline{v_0 v_1}$, $W = \overline{w_0 w_1}$ be lines in \mathbb{P}^3 . Then there is a unique matrix $A \in \mathsf{PGL}(2)$ such that the following diagram commutes.

$$\mathbb{P}^{1} \xrightarrow{A} \mathbb{P}^{1}$$

$$\downarrow u_{0}u_{1} \qquad \qquad \downarrow w_{0}w_{1}$$

$$U \xrightarrow{\pi(U,V,W)} W$$

 $\text{$A$ can be taken to be } \begin{pmatrix} -u_0 \wedge v_0 \wedge v_1 \wedge w_1 & -u_1 \wedge v_0 \wedge v_1 \wedge w_1 \\ u_0 \wedge v_0 \wedge v_1 \wedge w_0 & u_1 \wedge v_0 \wedge v_1 \wedge w_0 \end{pmatrix}.$

Example: The D_4 configuration

Theorem

Let $\mathcal L$ be the 16 lines of the $(12_4,16_3)$ configuration D_4 and let Π be the composition-closure of the projection functions. Then the group of the groupoid $\mathcal G=(\mathcal L,\Pi)$ is $\operatorname{Aut}_{\mathcal G}\cong S_3$.

Argument boils down to:

- $\operatorname{\mathsf{Hom}}_{\mathcal{G}}(L,L') \neq \varnothing$ for $L,L' \in \mathcal{L}$, so $\operatorname{\mathsf{Aut}}_{\mathcal{G}}$ is well-defined.
- Let $q \in L$ be a quadruple point and $\pi \in \text{Hom}_{\mathcal{G}}(L, L')$. Then $\pi(q)$ is a quadruple point. So $\text{Aut}_{\mathcal{G}} \leq S_3$.
- We have found automorphisms in $\operatorname{Aut}_{\mathcal{G}}(L)$ of orders 2 and 3, so $\operatorname{Aut}_{\mathcal{G}}\cong \mathcal{S}_3$.

In fact, one can find a subset of six lines whose group of the groupoid is $S_3!$

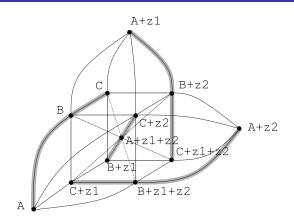
A Helpful Labeling

Let $\{A,B,C\}$ be a set of three letters, and consider the group $(\mathbb{Z}/2\mathbb{Z})^2 = \langle z_1,z_2 \rangle$. Then one can label the vertices of the D_4 configuration with the elements of $\{A,B,C\} \oplus (\mathbb{Z}/2\mathbb{Z})^2$ in such a way that there is a bijective correspondence between the lines of the D_4 and triples of the form

$${A+g,B+g',C+g'':g+g'+g''=0}\subseteq {A,B,C}\oplus (\mathbb{Z}/2\mathbb{Z})^2.$$

This makes the theorem on the previous slide easier to prove because you can divide the vertices into "types" A, B, and C.

A Helpful Labeling



- {*A*, *B*, *C*}
- $\{A + z_1, B + z_2, C + z_1 + z_2\}$
- $\{A + z_2, B + z_1 + z_2, C + z_1\}$
- $\{A + z_1 + z_2, B + z_1, C + z_2\}$

Other Finite Groupoids

Using a similar analysis, we have found finite groupoids with automorphism groups isomorphic to A_4 and S_4 within the Penrose and Klein configurations.

(1, 0, 0, 0)	(0, 1, 0, 0)	(0, 0, 1, 0)	(0, 0, 0, 1)
(0, 1, -1, 1)	(1, 0, -1, -1)	(1,-1, 0, 1)	(1, 1, 1, 0)
$(0, 1, -t, t^2)$	$(1, 0, -t, -t^2)$	$(1, -t, 0, t^2)$	$(1, t, t^2, 0)$
$(0, 1, -t^2, t)$	$(1, 0, -t^2, -t)$	$(1,-t^2, 0, t)$	$(1, t^2, t, 0)$
(0, 1, -t, 1)	(1, 0, -1, -t)	$(1,-t^2, 0, t^2)$	(1, t, 1, 0)
$(0, 1, -t^2, t^2)$	(1, 0, -t, -1)	(1,-1, 0, t)	$(1, t^2, t^2, 0)$
(0, 1, -1, t)	$(1, 0, -t^2, -t^2)$	(1, -t, 0, 1)	(1, 1, t, 0)
$(0, 1, -t^2, 1)$	$(1, 0, -1, -t^2)$	(1, -t, 0, t)	$(1, t^2, 1, 0)$
$(0, 1, -1, t^2)$	(1, 0, -t, -t)	$(1,-t^2, 0, 1)$	$(1, 1, t^2, 0)$
(0, 1, -t, t)	$(1, 0, -t^2, -1)$	$(1,-1, 0, t^2)$	(1, t, t, 0)

(0,0,1,1)	(0, 0, 1, i)	(0,0,1,-1)	(0,0,1,-i)
(0, 1, 0, 1)	(0, 1, 0, i)	(0,1,0,-1)	(0, 1, 0, -i)
(0, 1, 1, 0)	(0, 1, i, 0)	(0,1,-1,0)	(0, 1, -i, 0)
(1,0,0,1)	(1, 0, 0, i)	(1,0,0,-1)	(1,0,0,-i)
(1,0,1,0)	(1, 0, i, 0)	(1,0,-1,0)	(1,0,-i,0)
(1, 1, 0, 0)	(1, i, 0, 0)	(1, -1, 0, 0)	(1, -i, 0, 0)
(1,0,0,0)	(0, 1, 0, 0)	(0,0,1,0)	(0,0,0,1)
(1, 1, 1, 1)	(1,1,1,-1)	(1,1,-1,1)	(1,1,-1,-1)
(1,-1,1,1)	(1,-1,1,-1)	(1,-1,-1,1)	(1,-1,-1,-1)
(1, 1, i, i)	(1, 1, i, -i)	(1, 1, -i, i)	(1, 1, -i, -i)
(1,-1,i,i)	(1,-1,i,-i)	(1,-1,-i,1)	(1,-1,-i,-i)
(1, i, 1, i)	(1, i, 1, -i)	(1, -i, 1, i)	(1, -i, 1, -i)
(1, i, -1, i)	(1, i, -1, -i)	(1, -i, -1, i)	(1, -i, -1, -i)
(1, i, i, 1)	(1, i, -i, 1)	(1, -i, i, 1)	(1, -i, -i, 1)
(1, i, i, -1)	(1, i, -i, -1)	(1,-i,i,-1)	(1, -i, -i, -1)

A preprint is coming out soon on the arXiv!

Thank you!

Thanks for your attention! 1

¹(Pssst, I am on the job market!)