Groupoids of Configurations of Lines

Jake Kettinger

Colorado State University Speaking at the 2025 Lefschetz Conference in Nordfjordeid

3 June 2025

A finite set Z in \mathbb{P}_k^n is **geproci** if the projection \overline{Z} of Z from a general point P to a hyperplane $H = \mathbb{P}_k^{n-1}$ is a complete intersection in H.

Geproci stands for **ge**neral **pro**jection is a **c**omplete intersection. The only nontrivial examples known are for n = 3. In this case a hyperplane is a plane. A reduced set of points in a plane is a complete intersection if it is the transverse intersection of two algebraic curves. For #Z = ab ($a \le b$), Z is (a, b)-geproci if \overline{Z} is the intersection of a degree a curve and a degree b curve.

Given a $k \ge 0$ and field F, a k-spread of \mathbb{P}_F^n is a set of mutually-skew k-planes that partition \mathbb{P}_F^n .

Spreads are known to exist for F = any finite field if and only if k + 1 divides n + 1, also and for k + 1 = (n + 1)/2 for $F = \mathbb{R}$. Spreads are instrumental for the proof that $\mathbb{P}^3_{\mathbb{F}_q}$ is geproci under $\mathbb{P}^3_{\mathbb{F}_q}$. In this case, a spread is a partition of $\mathbb{P}^3_{\mathbb{F}_q}$ into lines. The Hopf fibration $H: S^3 \to S^2$ can yield a spread over $\mathbb{P}^3_{\mathbb{R}}$.

Let $L_{a,b}$ denote the line joining the points (1, 0, a, b) and (0, 1, -b, a), and let L_{∞} denote the line joining (0, 0, 1, 0) and (0, 0, 0, 1). Then $S = \{L_{a,b} : a, b \in \mathbb{R}\} \cup \{L_{\infty}\}$ is the spread yielded by the Hopf fibration. You can also use a similar method in positive characteristic to define a spread known as the **Hopf spread**. According to Gorla, it is possible to construct a spread of k-dimensional hyperplanes inside $\mathbb{P}^n_{\mathbb{F}_q}$ if and only if k + 1 divides n + 1.

Let $p(x) \in \mathbb{F}_q[x]$ be irreducible, monic, and degree k + 1, and let P be its companion matrix. Then one can construct a spread of spaces of the form

$$\operatorname{rowsp}\underbrace{\begin{pmatrix}0 & \cdots & 0 & \boxed{I_{k+1}} & A_1 & \cdots & A_j\end{pmatrix}}_{\frac{n+1}{k+1}} : A_i \in \mathbb{F}_q[P].$$

When k = 1 and n = 3, this construction is identical to the Hopf spread! But this also provides new examples of spreads in higher dimensions.

A **regulus** is a set of at least three mutually-skew lines \mathcal{R} such that there is a quadric surface Q where $\bigcup_{R \in \mathcal{R}} R \subseteq Q$, like this.

Every regulus \mathcal{R} admits an **opposite regulus** \mathcal{R}^* .

The Hopf spread contains reguli: for example $\mathcal{R} = \{L_{a,0} : a \in k\} \cup \{L_{\infty}\}$ is a regulus.

Given a spread S containing a regulus \mathcal{R} , the set of lines $(S \setminus \mathcal{R}) \cup \mathcal{R}^*$ is also a spread.

It was once conjectured that every spread could be constructed by starting with the Hopf spread and replacing a succession of reguli with their opposites. This is now known to be false.

イロト イヨト イヨト ・

Note that a spread over $\mathbb{P}^3_{\mathbb{F}_q}$ comprises q^2+1 mutually-skew lines.

Definition

A partial spread of $\mathbb{P}^3_{\mathbb{F}_q}$ with deficiency d is a set of $q^2 + 1 - d$ mutually-skew lines. A maximal partial spread is a partial spread of positive deficiency that is not contained in any larger partial spread.

Maximal partial spreads are also instrumental to the study of geproci sets; in fact, given a maximal partial spread \mathcal{M} , the set $\mathbb{P}^3_{\mathbb{F}_q} \setminus (\bigcup_{L \in \mathcal{M}} L)$ is geproci.

Given three lines $L_1, L_2, L_3 \subseteq \mathbb{P}^3_k$ where $L_1 \cap L_2 = L_2 \cap L_3 = \emptyset$, we can define the function $\pi(L_1, L_2, L_3) : L_1 \to L_3$ as follows: take $p \in L_1$. Then there is a unique line T such that $p \in T$, $T \cap L_2 \neq \emptyset$, and $T \cap L_3 \neq \emptyset$. Then define $\pi(L_1, L_2, L_3)(p) = T \cap L_3$. This is the **projection** of L_1 to L_3 via L_2 .

Here is a demonstration.

A groupoid is a category $\mathcal G$ where every morphism is invertible.

• For any object $G \in \mathcal{G}$, $Hom_{\mathcal{G}}(G, G) = Aut_{\mathcal{G}}(G)$ is a group.

 $\operatorname{Aut}_{\mathcal{G}}(G)$ is a "group of the groupoid."

• Whenever $\operatorname{Hom}_{\mathcal{G}}(G_1, G_2) \neq \emptyset$, then $\operatorname{Aut}_{\mathcal{G}}(G_1) \cong \operatorname{Aut}_{\mathcal{G}}(G_2)$.

So when $\text{Hom}_{\mathcal{G}}(G_1, G_2) \neq \emptyset$ for all $G_1, G_2 \in \mathcal{G}$, \mathcal{G} induces only one group of the groupoid, up to isomorphism. Then it makes sense to say "the" group of the groupoid, $\text{Aut}_{\mathcal{G}}$.

イロト イヨト イヨト ・

э

Theorem

Let \mathcal{L} be a set of lines in \mathbb{P}^3_F . Define Π to be the composition-closure of the set of functions { $\pi(L_i, L_j, L_k) : L_i, L_j, L_k \in \mathcal{L}, L_i \cap L_j = L_j \cap L_k = \emptyset$ }. Then (\mathcal{L}, Π) is a groupoid.

In this case, any group of the groupoid is a subgroup of $Aut(\mathbb{P}_F^1) \cong PGL(2, F).$

What can we say about this groupoid and its corresponding group(s)? In characteristic 0, when is it finite versus infinite? When does $\operatorname{Aut}_{(\mathcal{L},\Pi)}(L)$ have finite orbits, or finitely many orbits? What is the relationship (if \exists) between $\operatorname{Aut}_{(\mathcal{L},\Pi)} \leq \operatorname{Aut}(\mathbb{P}^1)$ and $\operatorname{Aut}(\mathcal{L}) \leq \operatorname{Aut}(\mathbb{P}^3)$?

In her 2024 thesis, Ganger used the technique of **transversals** to prove the following theorem:

Theorem (Ganger Corollary 2.5)

The group of the groupoid for the Hopf spread induced by the degree-2 field extension $\mathbb{F}_{q^2}/\mathbb{F}_q$ over a finite field is isomorphic to the quotient $\mathbb{F}_{q^2}^*/\mathbb{F}_q^* \cong C_{q+1}$.

Definition

Given a set of lines \mathcal{L} in \mathbb{P}^3_F , a **transversal** is a line \mathcal{T} in $\mathbb{P}^3_{\overline{F}}$ such that $\mathcal{T} \cap \overline{L} \neq \emptyset$ for all $L \in \mathcal{L}$.

The Hopf spread has exactly two transversals T_1 , T_2 for any finite field. The intersection of transversal with a line $L \in S$ is a fixed point of $Aut_{(S,\Pi)}(L)!$

э

Representing $Aut_{\mathcal{G}} \leq PGL(2, F)$

Let $U = \overline{u_0 u_1}$, $V = \overline{v_0 v_1}$, $W = \overline{w_0 w_1}$ be lines in \mathbb{P}^3 . Then any point on U can be written as $au_0 + bu_1$ for $(a, b) \in \mathbb{P}^1$ and any point on W can be written as $cw_0 + dw_1$ for $(c, d) \in \mathbb{P}^1$. Then if

$$cw_0 + dw_1 = \pi(U, V, W)(au_0 + bu_1),$$

we must have $(au_0 + bu_1)(cw_0 + dw_1) \cap V \neq \emptyset$. Therefore the wedge product

$$(au_0 + bu_1) \wedge v_0 \wedge v_1 \wedge (cw_0 + dw_1) = 0.$$

We can write this as a matrix formula

$$\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} u_0 \wedge v_0 \wedge v_1 \wedge w_0 & u_0 \wedge v_0 \wedge v_1 \wedge w_1 \\ u_1 \wedge v_0 \wedge v_1 \wedge w_0 & u_1 \wedge v_0 \wedge v_1 \wedge w_1 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = 0,$$

or rewrite this equivalently:

$$\begin{pmatrix} -u_0 \wedge v_0 \wedge v_1 \wedge w_1 & -u_1 \wedge v_0 \wedge v_1 \wedge w_1 \\ u_0 \wedge v_0 \wedge v_1 \wedge w_0 & u_1 \wedge v_0 \wedge v_1 \wedge w_0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} c \\ d \end{pmatrix}.$$

Theorem

Let \mathcal{L} be the 16 lines of the $(12_4, 16_3)$ configuration D_4 and let Π be the composition-closure of the projection functions. Then the group of the groupoid $\mathcal{G} = (\mathcal{L}, \Pi)$ is $Aut_{\mathcal{G}} \cong S_3$.

Argument boils down to:

- $\operatorname{Hom}_{\mathcal{G}}(L,L') \neq \emptyset$ for $L, L' \in \mathcal{L}$, so $\operatorname{Aut}_{\mathcal{G}}$ is well-defined.
- Let q ∈ L be a quadruple point and π ∈ Hom_G(L, L'). Then π(q) is a quadruple point. So Aut_G ≤ S₃.
- We have found automorphisms in $Aut_{\mathcal{G}}(L)$ of orders 2 and 3, so $Aut_{\mathcal{G}} \cong S_3$.

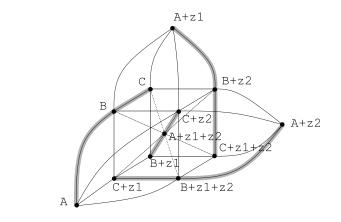
In fact, one can find a subset of six lines whose group of the groupoid is $S_3!$

э

Let $\{A, B, C\}$ be a set of three letters, and consider the group $(\mathbb{Z}/2\mathbb{Z})^2 = \langle z_1, z_2 \rangle$. Then one can label the vertices of the D_4 configuration with the elements of $\{A, B, C\} \oplus (\mathbb{Z}/2\mathbb{Z})^2$ in such a way that there is a bijective correspondence between the lines of the D_4 and triples of the form $\{A + g, B + g', C + g'' : g + g' + g'' = 0\} \subset \{A, B, C\} \oplus (\mathbb{Z}/2\mathbb{Z})^2$.

This makes the theorem on the previous slide easier to prove because you can divide the vertices into "types" A, B, and C.

A Helpful Labeling



- $\{A, B, C\}$
- $\{A + z_1, B + z_2, C + z_1 + z_2\}$
- { $A + z_2, B + z_1 + z_2, C + z_1$ }
- $\{A + z_1 + z_2, B + z_1, C + z_2\}$

Takk så mykje!

<ロト <問ト < 目ト < 目ト

3