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Serre [9, $501 has shown that there is a one-to-one correspondence between 
algebraic vector bundles over an affine variety and finitely generated projective mo- 
dules over its coordinate ring. For some time, it has been assumed that a similar 
correspondence exists between topological vector bundles over a compact Haus- 
dorff space X and finitely generated projective modules over the ring of con- 
tinuous real-valued functions on X. A number of examples of projective modules 
have been given using this correspondence. However, no rigorous treatment of 
the correspondence seems to have been given. I will give such a treatment here 
and then give some of the examples which may be constructed in this way. 

1. Preliminaries. Let K denote either the real numbers, complex numbers 
or quaternions. A K-vector bundle g over a topological space X consists of a 
space E(g) (the total space), a continuous map p :E(()-t X (the projection) 
which is onto, and, on each fiber F,(t) =p-'(x), the structure of a finite di-
mensional vector space over K. These objects are required to satisfy the follow- 
ing condition: for each x E X, there is a neighborhood U of x, an integer n, and 
a homeomorphism 4 :  p-l(U) -t U x Kn such that on each fiber 4 is a K-homo-
morphism. The fibers LL x Kn of U x Kn are K-vector spaces in the obvious 
way. Note that I do not require n to be a constant. The dimension of the fiber 
F,  may vary with x. However, this dimension is clearly locally constant and so 
will be constant if X is connected. 

A subbundle of 5 is, by definition, a subset El c E(<) such that El nF, is 
a K-subspace of F, for each x and such that E, with the projection p 1 El and 
the K-structure on its fibers induced by that of E forms a K-vector bundle over X. 

A map of K-vector bundles f :5 -+ q is defined to be a continuous map 
f :E(5) -+ E(q) such that pf = p and such that f 1 F,(g) :F,(t) -+ F,(q) is a K-
homomorphism. It is clear that the K-vector bundles over X and their maps 
form an additive category. 

A section s of g over a subset A c X is a continuous map s : A-t E ( t )  such 
that ps(x) = x. It follows immediately from the definition of a vector bundle 
that for any x EX,  there is a neighborhood U of x and sections sl, ..., s, of 5 
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over U such that s,(y), ...,s,(y) form a K-base for F,  for each y E U .  I will say 
that s,, ...,s, form a local base at  x. Any section of ( over U can be written as 
s (y)  = a,(y)s ,(y)  + ... + a,(y)s,(y) where ai (y)E K. Note that s is continuous if 
and only if each function ai is. (This is immediate for the local base e l ,  ...,en 
which we get from the definition of a vector bundle. If s,, ...,s, is another local 
base, si(y)= Cja i j (y )e j (y )  and y -+ (a i j ( y ) )is a continuous map U -+ GL(n,K).  
The result then follows from the fact that A +  A-I  is a continuous map in 
GL(n,K).)  Similarly, if s t ,  ..., s,, is a local base for 5 at x ,  t , ,  ..., t, is a local base 
for y at x,  and f :  5 +y,  then near x ,  f ( s i (y ) )  = x j a i j ( y ) t j ( y )and f is continuous 
if and only if each a i j ( y ) is continuous. I f f :  (+y is one-to-one and onto, the 
fact that A+ A-' in GL(n,K )  is continuous shows that f-I is continuous. In 
other words, such an f must be an isomorphism. 

LEMMA1. Let t,, ..., t ,  be sections of 5 over a neighborhood U of x such that 
t l ( x ) , ..., tk(x)  are linearly independent. Then there is a neighborhood V of x 
such that t , (y) ,  ..., t,(y) are linearly independent for each y E V. 

Proof. Let s t ,  ...,s, be a local base at x .  Let t i (y)= C a i j ( y ) s j ( y ) .Some 
k x k submatrix of (a i j ( x ) )must be nonsingular by hypothesis. Therefore this 
same submatrix must be nonsingular in (a i j (y ) )for all y sufficiently near x. For 
the real and complex numbers, this follows by taking determinants. For the 
quaternions, we must first replace the matrix by a real 4k x 4k one. We then 
know that the nonvanishing of this real determinant is equivalent to the non- 
singularity of the original matrix. The existence of the nonsingular k x k sub-
matrix clearly implies the conclusion of the lemma. 

In general, it is not true that a map of vector bundles has a kernel and image 
in the category of vector bundles. For example, let X = I, the unit interval, and 
let 5 be the product bundle I x K where p(x,y)  = x .  Let f :5 + 5 by f ( x , y )  = (x ,xy) .  
Then the image off  has a fiber of dimension 1 everywhere except at x = 0 where 
the fiber is zero. Thus im f cannot be a vector bundle. Similarly, kerf cannot be 
a vector bundle. However, this is the only sort of thing which can go wrong. 

PROPOSITION1. Let f :  5 + q be a m a p  of vector bundles. T h e n  the following 
statements arc equivalent: 

( 1 )  im f is a subbundle of 1 1 ;  
(2) kerf is a subbundleof  5 ;  
( 3 )  the dimensions of the fibers of im f are locally constant; 
( 4 )  the dimensions of the fibers of kerf are locally constant. 

Proof. It is clear that (3 )  and (4)  are equivalent and are implied by either ( 1 )  
or (2) .  To see that (3 )  implies ( I ) ,  let x E X ,  choose a local base s t ,  ...,s,, for < 
at x and a local base t , ,  ..., t ,  for y at x .  Let k be the dimension of the fiber of 
im f at x .  By renumbering if necessary, we can assume that fs , (x) ,  ...,fs ,(x) span 
F,(im f )  and so are linearly independent. By renumbering again, we can assume 
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fs,(x), ...,fs,(x), t k + l ( ~ ) ,..., tn(x) are linearly independent. Thus, by Lemma 1 
and the local constancy of the dimension of the fiber of y, fs,, ...,fs,, t,,,, ..., t ,  

form a local base for y at x. By the hypothesis and Lemma 1, fs,, ...,fs, form a 
local base for im f at x. It  is now clear that im f is a subbundle of y. 

To see that (3) implies (2 ) ,  let s,, ...,s, be as above. For all y near x, we can 
write fsi(y) = C:aij(y)fsj(y) for i > k. Let si(y) = s,(y) - C:a,j(y)sj(y). Then 
s;,,, ...,s i  are local sections of kerf and are linearly independent near x. Since 
there are exactly the right number of them, they form a local base for kerf. I t  
follows as above that kerf is a subbundle of <. 

REMARK 1. Without any hypothesis, this proof shows that if dim,F,(in~ f )  =n, 
then dim,F,(im f )  2 n for all y in some neighborhood of x. 

DEFINITION. An inner product on a K-vector space V is a function (,): 
V x  V+ K such that (x, y) is K-linear in x for each y, (y, x) = (x, y) -,and (x,x) >0 
unless x = 0. 

An inner product on a K-vector bundle < is given by an inner product (,), on 
each fiber F, which varies contiiluously with x. In other words, if Y is the subset 
of E(<) x E(<) consisting of all pairs (e,,e,) with p(e,) = p(e,), the totality of 
the ( ,), must give a continuous function Y -t K. 

LEMMA 2. If X is paracompact, every K-vector bundle over X has an 
inner product. 

Proof (Milnor [7, V, Theorem 51). Let {U,) be a locally finite covering of X such 
that p - ' ( ~ a )  = U, x Kna. It  is trivial to construct an inner product (,),,, on 
each p - ' ( ~ , ) .  Let {w,) be a real partition of unity on X for the covering {U,). 

Define (el, e21.x = Caoa(x) (el 3 e2Ia,.x. 
DEFINITION. If <,y are vector bundles, the direct sum 5 0 q  is defined by 

letting E(5 0y) be the subset of E(5) x E(y) consisting of pairs (el, e,) with 
p(e,) = p(e,). The projection p :E(<0y) -t X is defined by p(e,,e,) = p(e,) =p(e,). 
Clearly F,(< 0y) = F,(<) x F,(y). We give this a K-module structure in the 
obvious way. I t  is clear that < 0y is a vector bundle. 

PROPOSITION2. If X is paracompact, any subbundle y of a vector bundle < 
is a direct sumnzand. 

Proof (Milnor [7]). Choose an inner product for l. This inner product de- 
fines a projection f, :F,(<) +F,(q) which varies continuously with x. Thus 
f : ( -t y is a map of vector bundles. Let ( =kerf. By Proposition 1, ( is a sub- 
bundle of <.Clearly q @ ( = <. 

2. Modules of sections. Let C(X) = C,(X) be the ring of continuous K-valued 
functions on X. If < is a K-vector bundle over X let T(l) be the set of all sections 
of 5 over X .  If s,, s, E T(5), define (s, + s,)(x) = s,(x) + s,(x). If s E r(g) and 
a E C(X), define (as) (x) = a(x)s(x). With these definitions, r (<)  becomes a C(X)- 
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module. Clearly T is an additive functor from the category of K-vector bundles 
over X to the category of C(X)-modules. If t is the trivial bundle E ( t )  = X x Kn, 
then T ( t )  is obviously a free C(X)-module on n generators. 

The object of this section is to show that if X is normal, I? gives an isomorphism 

Horn ( t ,r ) x H ~ ~ c ( x ,  m ) ) .(r(t), 
LEMMA3. Let X be normal. Let U be a neighborhood of x ,  and let s be 

a section of a vector bundle 5 over U .  Then there is a section s' of t over X 
such that s' and s agree in some neighborhood of x .  

Proof. Let V, W be neighborhoods of x such that P c U ,  PV c V. Let w 
be a real-valued function on X such that w I TV = 1, w IX - V = 0. Let s l (y)= 

o(y ) s (y )if y E U and s'(y) = 0 if y $ U .  

1.COROLLARY Let X be normal. For any x E X  there are elements s,, ..., s, E 

T ( t )  which form a local base at x .  

COROLLARY Let X be normal. If f ,  g :t -,q and I?( f )  =I?(g): T ( t )-+ I?(g) ,2. 
then f = g. 

Proof. Given e E E ( t ) ,  with p(e) = x ,  there is a section s over a neighbor-
hood U of x with s ( ~ )=e. By Lemma 3, there is a section s' E I?(()with s ' ( ~ )= e. 
Now f ( e )  =f s l (x)  = ( T ( f ) s l ) ( x )= ( T ( g ) s f ) ( x )= g(e). 

LEMMA4. Let X be normal. Let s E r ( t ) .  Suppose s(x) =0. Then there are 
elements s,, ...,s,, E I?((), a,, ...,a, E C ( X )  such that ai(x) = 0 for i = 1, ...,k 
and s = Caisi .  

Proof. Let s,, ...,s , ~ T ( t )be a local base at x (Corollary 1). Let s(y) = 

C bi(y)si(y)near x ,  bi(y) E K. Let ai E C ( X )  be such that a, and bi agree in a 
neighborhood of x.  These exist by Lemma 3 applied to X x K. Then s' = s - Cais, 
vanishes in a neighborhood U of x.  Let V be a neighborhood of x such that 
P c U.  Let a E C ( X )  be zero at x and 1 on X - V. Then s = as' + Capi .  But 
a ( x )  = 0 and ai(x)= bi(x) = 0.  

COROLLARY Let I ,  be the (2-sided) ideal of C ( X )  consisting of all3. 
a E C ( X )  with a(x)  = 0. Then F( t ) / I ,T( t )  x F,(t), the isomorphism being 
given by s -+ s(x). 

This follows from Lemnla 4 and the proof of Corollary 2. 

THEOREM1. Let X be normal. Given any C(X)-map F :  T ( t )  -+ T(q) ,  there 
is a unique K-bundle map f :  t- , g such that F = T ( f ) .  

Proof. The uniqueness follows from Corollary 2. Now, F induces a map 
f,: T ( t ) / I ,T ( t )  -T(q)/I,T(q). The totality of these yield a map f :  E(5) -E(q). 
This map is K-linear on fibers. Its continuity remains to be verified. If S E  r ( t ) ,  
( f s )  ( x )  =f,s(x) = (F(s))  ( x )  by construction so that F = T ( f ) .  
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To check that f is continuous, let s,, ...,s,, E T(5) be a local base at x. If e E E(5) 
and p(e) is near x, we have e = Cai(e)si(p(e)) where the ai are continuous K- 
valued functions. Now, f(e) = Cai(e)fsi(p(e)). Since fsi =F(si), fsi is a continuous 
section of q. Now all terms in the sum are continuous in e. Thus f is continuous. 

COROLLARY4. Let X be normal and 5, q two K-vector bundles over X. Then 
5 % q if and only if r(5) = T(q) as C(X)-modz~les. 

3. Projective modules. I will now show that if X is compact Hausdorff, 
the C(X)-modules which can occur as I?(<) for some 5 are exactly the finitely 
generated projective modules. 

LEMMA5. Let X be compact Hausdorff. Let 5 be any K-vector bundle 
over X. Then there is a trivial vector bundle 5 (i.e., E(<) =X x Kn) and ail 
epimorphisnz f :  5 -+ 5. 

Proof. For each x EX,  choose a set of sections s,,,, ..., s,, k,  E r(5) which 
form a local base over some neighborhood U, of x. A finite number of the U, 
cover X. Therefore, there are a finite number of sections s,, ...,S,E T(5) such 
that s,(x), ...,sn(x) span F,(5) for every x. Let 5 be the trivial bundle with E(5) = 

X x Kn. Then r(5) is a free C(X)-module on n generators el, ...,en. Map r(5) -+ 

T(5) by ei -t si. By Theorem 1, this is induced by a map f :  5 -+ 5. Since fei = si, 
q(x) E im f. Therefore f is onto. 

COROLLARY5. If X is compact Hausdorff, any K-vector bundle over X is a 
direct summand of a trivial K-vector bundle 5. 

Proof. Let f:[ -+ 5 as in Lemma 5. Let q =ker f. By Proposition 1, q is a 
subbundle of 5. By Proposition 2, 5 = q @ 5'. Clearly 5' % 5. 

COROLLARY If X is compact bundle6. HausdorfS and 5 is any K-vector 
over X, then T(5) is a finitely generated projective C(X)-module. 

Proof. By Corollary 5, T(5) is a direct summand of r(5) which is a finitely 
generated free C(X)-module. 

THEOREM2. Let X be compact Hausdorff. Then a C(X)-n~odule P is isomor- 
phic to a module of the form I?(() if and only if P is finitely generated and 
projective. 

Proof. The "only if" follows from Corollary 6. Suppose now that P is finitely 
generated and projective. Then P is a direct summand of a finitely generated 
free C(X)-module F. Therefore, there is an idempotent endomorphism g: F -+ F 
with P = img. Now F = r(<)  where 5 is a trivial K-vector bundle. By Theorem 1, 
g = F(f) where f:5 -+ 5. Since g 2 = g, Theorem 1 implies f 2 =f. If we knew 
that 5=im f was a subbundle of 5, we would have (Proposition 2) 5 = 5 0 q 
where q = ker f, and so P E imr(f) =T(5) since l- is an additive functor. By 
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Proposition 1, it is enough to show that dim,F,(() is locally constant. Since f 2  =f, 
y = kerf = im (1 - f )  and F,(<) = F, (5) @ F,(q). Suppose dim,F,(t) = h, 
dim,F,(q) = lc. By Remark 1 applied to f and 1 -f respectively, we have 
dim F,(t) >= h, dim F,(q) >= k for all y in some neighborhood of x. But 

dim F,(t) + dim F,(y) = dim F,([) = h + k 

is a constant. Thus dim F,(<) is locally constant. 

4. Examples. The rings C(X) are generally too large to give nice examples. 
We would like examples of projective modules over affine rings. Therefore, 
we proceed as follows: find some affine ring A c C(X) and a finitely generated 
projective A-module P. Then C(X) Q, P is a finitely generated projective C(X)- 
module and so is isomorphic to some T(5). To prove that P is nontrivial in some 
sense (not free, indecomposable, etc.) it will then suffice to show that 5 is non- 
trivial in the same sense (by Corollary 4). 

EXAMPLE1 (KAPLANSKY).A projective modllle with a free complement which 
is not free. 

Let zn be the tangent bundle of the n-sphere Sn. This is, of course, a real vector 
bundle. The usual imbedding Sn c En+ '  shows that zn@ v1 is trivial where v1 
is the normal bundle [7, I]. Clearly v' is also trivial. Thus T(zn) is projective 
and has a free complement. In fact, T(zn) @ C(X) is free. However, by Corollary 4, 
T(zn) cannot be free unless Sn is parallelizable. This can only happen if n = 

0,1,3,7 [4; 51. Of course, we do not need to use this deep result. It would suffice 
to take n even. In this case, T(zn) is even indecomposable. To see this, suppose 
zn= 5 @ y. Then the Euler classes satisfy X(zn) = X(t)X(y) [7, VIII, Theorem 
131. But, if 5, q # 0, X(5) and X(y) have dimensions between 1 and n-1 and 
so must be 0. On the other hand, X(zn) = x(Sn)p =2p where p generates Hn(Sn) 
[7, IX, Theorem 161. 

We must now reduce T(zn) to a reasonable size. The bundle 5 = zn@ v1 is 
trivial. An element of E(<) consists of a point x = (x,, ...,x n ) € S n  and 
a vector u = (u,,  ...,u,) of En+  '.The subbundle v '  consists of those pairs [x, ti] 
for which u = Ax for some real A. We can project 5 onto v l  by f ([x,~]) = [x,Ax] 
where A = (x,u) is the inner product zxiui. Let ei = (0, ...,0,1,0, ...,O), the 1 
occurring in the ith place. Then si :x -t [x, ei], i =0, ...,n, form a set of gen- 
erators for T(<). Now fsi :x -t [x, (x,e,)x] = [x, xix] = zjx,xjsj(x) SO fsi = 
xi  zjxjsj. Thus T( f )  and so T(zn), can be defined using only polynomials. 
Let A =R[x,, . . .,xn]/(x; +xf + . . . + x: - I), R being the real numbers. Then A c 
C(Sn). Let P be a free A-module on n + 1 generators so, . . .,s,. Define g :F -,F 
by g(si) = zjxixjsj. Then g is idempotent, so P = kerg is projective. Clearly 
C(X) Q, P % T(zn). Thus P is indecomposable if n is even and P is not free 
for n # 0,1,3,7. However, P @ im g =F is free. Now im g contains g ( zxisi) = 
Cxjsj and this clearly generates img. Thus img is free so P has a free comple- 
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ment (i.e., its direct sum with a finitely generated free module is free). Since 
P z Flimg, we can express the result as follows. 

THEOREM3. Let A = R[x,, ...,x,]/(x; + ... + x: - I), R being the real 
numbers, n 2 1. Let P be the A-module with generators so, ...,s, and relation 
&si = 0. Then P @ A is free but P is not free for n # 1,3,7. If n is even, P is 
even indecomposable. 

Another way to express this result [lo, $91 is to observe that (x,, ...,x,) is a 
unimodular row over A. The above results show that it cannot be the first row 
of a unirnodular A-matrix unless n = 1,3,7. Equivalently, (x,, ...,x,) cannot be 
transformed into (1,0, ...,0) by a unimodular A-matrix unless n = 1,3,7. 

REMARK. It is known that the complexification of the tangent bundle of Sn 
is a trivial bundle. This naturally suggests the question: Is CP free over CA, 
C being the complex numbers? The answer is "yes" as is shown by the following 
series of unimodular transformations. Let 2u = x, + ix,, 2v = x, - ix,. Then 
(x,, xl, x2, ..., x,) = (U+ v, - iu + iv, x2, ...,x,) + (2u, -iu + iv, x2, ...,x,) -+ 

(2u,iv,x2,...,x,) + (2u + ( I  -2u)(-4iu( iv)+xi+ ... +x,),2 iv, x2 ,...,x,) = 

(1, iv, x2, ...,x,) + (1,0, ...,0). These transformations, applied to the base for 
CF yield a new base in terms of which (x,, ...,x,) becomes (1,0, ...,0). Clearly 
factoring out the submodule generated by this element gives a free module. 

REMARK.It is interesting to note that P is indeed free for n = 1,3,7. We can 
choose bases e,, ...,en for the complex numbers, quaternions, and Cayley num-
bers such that e, = 1 and the norm of x = zxiei is Nx = Cx:. Consider the 
matrix R, of the linear transformation y +yx. The entries of R, are integral 
linear combinations of the xi. The first row of R, is (x,, ...,x,). The determinant 
of R, is Nx, Nx2, Nx4 for n = 1,3,7. Consequently, if we regard R, as a matrix 
over A, it is unimodular and completes (x,, . . .,x,). 

EXAMPLE2 (CHASE, see [3, Remark, p. 4511). A projective module with a 
large number of generators. 

There is a standard real line bundle y 1  over real projective n-space defined as 
follows [7, I]: Pn is the set of all lines 1 through the origin in En". E ( ~ ' )  consists 
of all pairs (1, x) where x E I. The projection is p(1, x) = 1. The real vector space 
structure on the fibers is the obvious one. Let ak- l  be a trivial real vector bundle 
over P" with fibers of dimension k-1 (i.e., a (k- 1)-plane bundle). Then < = 

y' @ ak-' is a k-plane bundle over P . I claim that r(<)cannot be generated over 
C(X) by fewer than n +k elements. If it could, it would be a direct summand of a 
free C(X)-module on n +k- 1 generators. Therefore, < would be a direct summand 
of a trivial (n + k - 1)-plane bundle. In other words, there would be an (n- 1) -
plane bundle q over Pn such that < @ y is trivial. Now, the total Stiefel-Whitney 
class of < is W(<) = W(y1) = 1 + a where a generates H1(Pn,Z2). Let W(y) = 

1+a,  a + ...+ a' where r is the largest integer such that W,(q) # 0. Since q 
is an (n- 1)-plane bundle, r 5 n - 1. By the Whitney product theorem [7,II], 
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W(<) W(y) = W(<Cj3 q) = 1 since < Cj3 q is trivial. But, W(<) W(q) = orpi1 + lower 
powers of a. Since r 5 n - 1, r + 1 S n and o r r + '  # 0. Thus we have arrived 
at a contradiction. 

If P is a projective module over a commutative ring A, the rank of P is defined 
to be the maximum of dim,,,(P/MP) over all maximal ideals M of A. If A = C(X) 
for K =R or C, X compact Hausdorff, every maximal ideal of A has the form 
1, [6,  Chapter IV, 19C1. Therefore, by Corollary 3, the rank of T(<)is just the 
maximum of the dimensions of the fibers of 5. Therefore, we can restate the result 
proved above by saying that there is a finitely generated module of rank k over 
C(Pn) which cannot be generated by fewer than n + k elements. 

Now r(<)  is the direct sum of r(yl) and a free module. In order to replace C(Pn) 
by a suitable affine ring A, we must find a more explicit description of r(y1). 
Let p: S n +  Pn be the natural projection. Then the map C(P ) +C(Sn) by 
f +fp is a monomorphism. Therefore, we can identify C(Pn) with the subring 
of C(Sn) consisting of those functions which satisfy g(-x) =g(x). If s is a sec- 
tion of yl, then sp(x) = ((x), h(x)x) where (x) denotes the line through 0 and x, 
and h ( x ) ~ R .  Now sp(x) =sp(-x) = ((x), h(-x)(-x)) so h(-x) = -h(x). 
Conversely, such an h gives a section s of yl. Thus T(y1) is isomorphic to the 
submodule M of C(Sn) consisting of those functions h satisfying h(-x) = -h(x). 
Consider the functions h,(x) = xi. These give sections so, ...,sn of yl. For any x E Sn, 
some si(x) # 0. Since yl  is a line bundle, the si(x) generate ~,(y ' )  for every x. 
Therefore so, ...,sn generate r(yl) or, equivalently, x,, ...,xn generate M. 

We can write M as a direct summand of a free module as follows: Let F be 
the free C(X)-module on n + 1 generators e,, ...,en. Map F +M by ei +xi. 
Map M +F by h +xihe, + ... + x,hen. Note that xih E C(Pn) if h E M. Clearly 
M -+ F -t M is the identity. 

Now, choose A c C(Pn) to be the subring of R [x,, ...,xn]/(x: + ... + xn2 - 1) 
consisting of all those polynomials all of whose terms have even (total) degree. 
Let P be the A-submodule of R [x,, ...,xn]/(x: + ... + x: - 1) generated by 
x,, ...,x,. Thus P consists of those polynomials all of whose terms have odd 
(total) degree. Now P is a direct summand of a free module by the same con- 
struction as that given for M in the preceding paragraph. Therefore P is pro- 
jective. Clearly C(Pn) @,Px M. If P, is the direct sum of P with a free A-module 
on k - 1 generators, then C(Pn) @, Pkx r(<).Therefore, Pk cannot be gene-
rated by fewer than 11 + k elements. Since P, has rank k, we have proved the 
following result. 

THEOREM4. Let A be the subring of R [x,, ...,xn]/(x: + ... + x 2  - 1) con-
sisting of all polynomials all of whose terms have even degree. Then for every 
integer k 2 1 there is a finitely generated projective A-module Pk of rank k 
which cannot be generated by fewer than n + k elements. 

Note that A is an affine ring of dimension n. 
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REMARK. Suppose X is a finite complex of dimension n. Let 5 be a real k- 
plane bundle over X. Then standard obstruction theory arguments show that 5 
is induced from the standard k-plane bundle yk over G,,, (the Grassmannian) 
by a map X -+ G,,,. Now yk has a complementary n-plane bundle y'" such that 
yk @ y"' is trivial. Let y over X be induced by y'l Then 5 @ q is a trivial (n + k)-
plane bundle. It  follows that T(() can be generated by n + k elements. The example 
considered above shows that this is the best possible result. This suggests the 
following problem, due to Serre. 

PRORLEM. Let A be a commutative noetherian ring whose maximal ideal 
spectrum has dimension n [lo, $2; 31. Let P be a finitely generated projective 
A-module of rank k. Can P be generated by n + k elements? 

By Theorem 4, n + k would be the best possible value. Bass [3] has given an 
upper bound for the number of generators of P. For k = 1, this bound is n + 1, 
so the answer to the problem in case k = 1is "yes." 

EXAMPLE3. UNIQUE FACTORIZATION. If A is an integral domain with quotient 
field F,  and P is a finitely generated projective A-module, the rank of P is the 
dimension over F of F @,P. This can easily be seen by localization [lo, $31. 
Therefore, if we express P as a direct summand of a free module M, the matrix E 
which gives a retraction of M on P will have rank equal to the rank of P. 

If A is a unique factorization domain (UFD), it is well known that every pro- 
jective A-module of rank 1 is free. This is easily seen as follows: Over a field, 
a rank 1 matrix has all its rows linearly dependent and so can be written in the 
form (aibj). Consequently, if A is any integral domain, any rank 1 matrix with 
entries in A has the form (a,bjd-') with a,, bj, d E A. Now, if A is a UFD, any 
prime p dividing d must also divide all aibj since the entries are in A. Therefore, 
either p divides all a i  or p divides all bj. If, say, p divides all ai, replace a, by 
p-'ai and d by p-ld. Continue this process as long as there are primes dividing d. 
In this way we see that any rank 1 matrix over a UFD A has the form (aibj) 
with ai, bj E A. If E = (aibl) is idempotent and nonzero, C aibl = 1. Consequently, 
the image of E is generated by the column (a,) and so is a free A-module. 

If A is a regular domain [I, $41, every rank 1 prime ideal is projective. This 
is equivalent to the fact that regular local rings are UFD's [2]. Therefore, in 
this case, A is a UFD if and only if every rank 1 projective module is free. 

Consider the rings A, = R [x,, ..., x,] / (x i  + ... + x: - 1) and CA, = 

C [x,, ...,x,]/(xi + ... + x i  - 1). These are easily seen to be regular if n > 0. 
Our experience in Example 1 suggests that we can get information about projec- 
tive modules over these rings by looking at real and complex vector bundles 
over Sn. 

If A c C(X), and P is a finitely generated projective A-module, then 

c(x)o,, P =r ( t )  
for some 5. Now 



19623 VECTOR BUNDLES AND PROJECTIVE MODULES 273 

Now assuming K cA, we see that M, = I, n A is a maximal ideal of 
A and AIM, = C(X)/I, w K. Therefore, F,(5) w P/M,P. Thus, the rank of P is 
the maximum of the dimensions of the fibers of 5. In particular, projective mo-
dules of rank 1 correspond to line bundles over X. 

Now, there are nontrivial real line bundles over S n  for n > 1 and no nontrivial 
complex line bundles over Sn for n = 1 or n 5 3. There is, however, a nontrivial 
bundle (Mobius band) over S1 and a nontrivial complex line bundle over S z  
(the tangent bundle of S2 with its usual complex structure). This leads us to 
conjecture the following theorem, which turns out to be correct. 

THEOREM5 ( 2 ) .  For n 5 1, A, is  a UFD for n# 1 and CA, is a UFD for 
n # 2. Furthermore, A1 and CA, are not UFD's. 

Of course, we cannot prove that A, is a UFD by topological means. Many pro- 
jective modules may conceivably become free in passing from A, to C(Sn). How- 
ever, the result is easily proved by methods of Nagata [8]. Let T, = 

R[yo, ...,y,,t]/(yi + ... + y: - t2). Then T,[t-'1 w A,[t,t-'1, by sending yi into 
txi. If we can show T, is a UFD, it will follow that ~,[t , t- '1 is a UFD. By [8, 
Lemma 11, A,[t] is then a UFD and so A, is a UFD. Let u=y, + t, u = y, - t. 
Then T, = R[yo, ...,y,- ,,u, u]/(~: + ... + y:-, + uu). Therefore, r,[u -11 = 

R[yo, ...,y,-,,u, u-'1 is a UFD. By [8, Lemma 11, to show T, is a UFD we need 
only show that (u) is a prime ideal in T,. This is clear for n 2 2 because 
T,/(u) = R[y,, ...,y,- l,u]/(y: + ... + y:- For Cr,, this argument only works 
if n 5 3 because yi+ yi is not irreducible over C. The fact that CAI is a UFD 
was shown by Nagata [8] by the same argument applied directly to CA, using 
u =xo + ix,, v =x, - ix,. 

The fact that A, is not a UFD was also shown by Nagata [8] by elementary 
means. However, I will deduce it here from the nontriviality of the Mobius bundle. 
If we identify S' with the set of real numbers 9 mod2n, this bundle can be defined 
as the subbundle p of S' x R' consisting of all (8, l cos 812, l sin 812) with 3, E R. 
Clearly, the fiber undergoes a half twist as 8 goes from 0 to 2n. The retraction 
of S' x R~ on p is given by p :(8, u, v ) + (8, A cos 8/2,1 sin 812) where il = u cos 812 
+ v sin 912. Note that while l depends on 8 mod 4n, 3,cos 812 and l sin 812 only 
depend on 8mod2n. The usual representation of S1 by x2 + y2 = 1 is related 
to the one above by x = cos8, y =sing. In terms of x and y, the retraction 
becomes p :(x,y ;u,u) -,(x,y; 1/2(1 + x)u + 1/2(yu), 112 (yu) + 112 (1 - x)u). Let 
P be the rank 1 projective A,-module which is the image of the retraction 
p :(up) -+ (1/2(1 + x)u + 1/2(yu), 1/2(yu) + 1/2(1 - x)u) defined on the free 
A,-module ((u,~)1 u,u €A1). Then C(S1) @,,P = l?(p). This is not free since 
the Mobius bundle is nontrivial. 

(2) The first statement in this theorem is due to P. Samuel (unpublished). The statements 
about A1 and CAI are due to Nagata [a]. 
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To show that CA, is not a UFD, we first find a simple way to describe the 
complex structure on the tangent bundle 7 of S 2 .  Identify S 2  with the set of 
quaternions x such that Ix I = 1, x I 1.A tangent vector to Sz at x is a quaternion 
y such that y I1, y I x. Therefore, E(r) may be identified with the set of pairs 
of quaternions (x,y) satisfying Ix 1 = 1, x I1, y 1, y x. The projection is 
p(x,y) = x. Now, if x E S2, x2 = -1. Therefore y I1, y r x implies xy r x and 
xy I x2 = -1. Thus J :  (x,y) + (x,xy) sends E(7) into itself and preserves fibers. 
SinceJ, = -1, we can identify the action of J on 7 with multiplication by i = 
( - I ) "~ .  This makes 7 a complex line bundle 7'. 

Now, as in Example 1, T(z) can be regarded as the submodule of the free c(s2)- 
module {(y ,,y2,y3) Iyi E C(S2)) consisting of those (yl,y2,y3) such that xl  y, + 
x,y, + x3y3=0. The map J :  7 +z induces a map J :  T(r)-+ T(7) given by 
J(YI,Y,,Y~)= ( ~ 2 ~ 3X~YZ, - XiY3, X i Y 2  - these being the corn- - X 3 Y i  ~ 2 ~ 1 )  
ponents of the corresponding quaternion product xy. The projective A,-module 
P considered in Example 1 is the submodule consisting of all (yl,y2,y3) with 
yi E A,. This is clearly stable under J. Therefore, we can make Pinto a module P '  
over CA, by identifying J with multiplication by i =(- 1)'12. Clearly 

To show that P' is prqjective over CA,, note that we could have made P 
into a module P "  over CA, by identifying J with multiplication by 
- i  instead of i .  Now C O P  x P ' O P "  as CA,-modules, the isomorphism 
C @ P + P I O P "  being given by l@p+(p ,p ) ,  i@p- t (Jp , - Jp) .  Since P is 
A,-projective, C @ P is CA,-projective, so P' and P "  are also CA,-projective. 
Since 7 is nontrivial, so is 7'. Therefore, P '  is the required nonfree projective 
CA,-module of rank 1. Thus we have shown that CA, is not a UFD. 

REMARK. The almost complex structure on s can be defined exactly as 
above using the Cayley numbers instead of the quaternions. There is no need 
to worry about nonassociativity since all the above calculations can be done 
in the subalgebra generated by x and y which is associative. The third Chern 
class of the complex tangent bundle is equal to its Euler class [7, XI] which is 
2 times the generator of H~(s,). Therefore, the bundle and hence the resulting 
projective CA,-module P '  has no free complement. However, if we consider P' 
as a A,-module only, it has a free complement as in Example 1. Therefore, the 
module P '  @ CA6 has no free complement as CA,-module but is free when re- 
garded as a A,-module. The same comment applies to P' over CA, but CA, 
gives a somewhat more interesting example because A, and CA, are regular 
UFD's and so are among the nicest possible affine algebras. 

EXAMPLE4. EXTENDINGTHE GROUNDFIELD. The following question was raised 
by J. Towber. It is in some sense dual to the one answered by the above remark. 

QUESTION. Let A be an affine algebra over a field K. Let Pbe afinitely generated 

mailto:i@p-t(Jp,-Jp)
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projective A-module. Let L be an extension field of K. Suppose LP is LA-free. 
What can be said about P ?  

At first sight, one might hope that P itself would be free, at least if A is nice 
enough. However, the first remark in Example 1 shows that this is not the case. 
The rings involved, A, and CA,, are even regular UFD's for n 2 3. In this 
example, P has a free complement. Therefore, one might hope that, in general, 
the module P in the above question would have a free complement. However, 
even this turns out to be false. In this section A,, CA, have the same meaning 
as in Example 3. 

THEOREM6. There is a finitely generated projective module A over A, 
such that A has no free complement but CA is free over CA,. 

The vector bundle used to prove this theorem is the one associated with the 
Hopf fibering S' -P s4.Let V be the 2-dimensional quaternionic vector space 
consisting of pairs of quaternions (q,, q,). The quaternionic projective line QP' 
is the set of (quaternionic) lines through 0 in V. Since such a line is determined 
by a single point on it (other than 0), QP' is obtained from V - 0 by making 
the identifications (ql, q,) - (Iq,, Iq,) for every nonzero quaternion I.A repre- 
sentative (q,, q,) of a point in QP' can obviously be normalized to satisfy I q l 2  + 
1 q2 I 2  = 1. 

There is a standard quaternionic line bundle y' over QP 'analogous to the real 
line bundle over P" considered in Example 2. The total space E(yl) consists of 
all pairs (1, y) where 1 is a line through 0 in V and y E 1. The projection is p(1, y) = 1. 
If we identify 1 by a point q = (q,,q,) on it, any other point on it has the form 
y = (y,, y,) = (Iq,,Iq,) = Iq. Therefore, we can alternatively define E(yl) as the 
set of all (q, Iq) where q E V - 0, I is any quaternion, and where (q, Iq) is iden- 
tified with (pq, Iq) for p # 0. 

The bundle y' is a subbundle of the trivial bundle consisting of all (q, y) where 
q # 0 is subjected to the same identification as before and y E V is independent 
of q. If we always choose q to be normalized, the projection p of this bundle on 
y' can be defined by (q, y) -P (q,Iq) where I = (y ,  q )  = ylql + y2g2. This 
is easily seen to be independent of the normalized representative q. 

It is now necessary to identify QP' with s4in a nice way. If (q1,q2) represents 
a point of QP' and q, + 0, then (q1,q2) - (1,q) where q = q;' q2. If q1 = 0, 
(q1,q2)- (0,l). In this way, QP' is identified with the set of quaternions plus 
a point at infinity corresponding to (0,l). Now, s4is the set of points in E5 
satisfying x i  + x: + ... + x i  = 1. Identify the hyperplane x, = 0 with the quater- 
nions by q = x1 + ix, + jx, + kx,. Let e, be the point (1,0,0,0,0). By stereo-
graphic projection from e, on the hyperplane x, = 0, we can map s, - e0 homeo- 
morphically onto the quaternions. By elementary analytic geometry, the formula 
for this map is found to be x + q where 
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In this way, we can map s4- eO-,QP' - (0,l)  by x -,(I, q). Since s4 ,  QP' are 
the one-point compactifications of S4- eO,QP' - (0,l) respectively, this map 
can be extended to a homeomorphism s4--t QP by sending e ,  to (0,l). 

The representative (1,q) is not normalized. Since xt  + ... + x: = 1, it is easy 
to check that the normalized form is x -,q = (q,, 9,) where 

For x, = 0, q, = 0 and q, is indeterminate. However, I q, I -,1 as x, -,0. 
The trivial bundle considered above now has the form S4 x V and the pro-

jection p of this bundle on y1 is given by p (x, y) = (x,Aq) where q = (q,, q,) is 
the normalized expression given in the preceding paragraph and A = (y, q ). 
Substituting the value of q in terms of x now gives 

Let K denote the quaternions. Let M = {(y,, y,) 1 y,, y, E K A,) be a free 
module on two generators over KA,. Let p :  M -,M be defined by 

Then p is an idempotent endomorphism of M. Its image P is thus projective and 
clearly cK(s4)  P w ~ ( ~ ' 1 .  

Let f :  M +M by f(y,, y,) = (- y,, y,). An easy calculation shows that 
f-'(1 - p)f sends (y,, y,) into 

Therefore, ker p =im (1 - p)wim f-1 (1 - p)f w P' where P '  is the conjugate 
KA, module obtained from P by letting i, j, k act as - i, -j, -k. Since P O ker p 
is free, this shows that P @ P' is free. 

Now, let A be P considered as a module over A,. Then, as in Example 3, 
C @ A w P 8 P '  as modules over CA,. Thus CA = C @ A is free over CA,. 

However, c,(s4) @,,,A w T(yl) where y l  is now considered as a real vector 
bundle. The associated sphere bundle is just the Hopf bundle S' -+ s4 with 
fiber s3Ell, Part 2, $20.41. Consideration of the spectral sequence (or even the 
homotopy sequence) of this bundle shows that the Euler class x ( ~ ' )generates 
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H4(s4). The Stiefel-Whitney class w,(?') is ~ ( y  mod 2 [7, VIII] and') reduced 
therefore, generates H4(s4,z,). If 8 is any trivial real vector bundle over s4 ,  
W4(8@ y') = w4(y1) # 0. Thus 8 + y' can never be trivial. Consequently, A has 
no free complement. 

A similar example over A, could be given by using the Hopf bundle s3 s2. 
However, CA, is somewhat nicer than CA,, being a UFD. 

REMARK.After this paper was submitted, the paper Sur les anneaux factoriels, 
Bull. Soc. Math. France 89 (1961), 155-173 by P. Samuel appeared. This contains 
his proof of Theorem 5. Theorem 3 is also stated (for the case n = 2) and the 
connection with topology is pointed out but no details are given. 

I have also recently become acquainted with the mimeographed notes Dij-
ferential topology, Princeton, 1958, by J. Milnor. These notes contain (Lemma 
2.19, Theorem 2.20) an analogue of Lemma 5 in which X is assumed paracompact 
and finite dimensional and the dimension of the fiber is assumed constant. The 
proof in fact only requires X to be paracompact and have the property that 
every covering has a finite dimensional refinement. Consequently, Theorem 2 
also holds for such spaces X provided we consider only bundles whose fibers 
have bounded dimension. This will always be the case if X has a finite number 
of components. 
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