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This talk is based on the findings of Dutta, Halbeisen, and Hungerbühler in their 2023
paper Properties of Hesse derivatives of cubic curves, and on the speaker’s own research.
We also look at Hesse Pencils and 3-Torsion Structures by Anema, Top, and Tuijp.

Definition 1. Let k be a field and let f ∈ k[x, y, z] be a polynomial. The hessian H(f) of
f is determinant of the matrix fxx fxy fxz

fxy fyy fyz
fxz fyz fzz

 .

Note that the degree of H(f) is 3(deg f − 2). Thus when deg f = 3, we have degH(f) = 3.
For the next definition we will use the Bengali letter হ, pronounced like “haw.”

Definition 2. Let C = V (f) be a curve in P2
k. Then the Hesse derivative হC of C is

V (h(f)).

An important property of the Hesse derivative of C is that

C ∩ হC = {P : P is a flex point of C}.

I first got interested in this topic from reading ATT, who talk about the Hesse pencil: the
elliptic fibration spanned by an elliptic curve E and its Hesse derivative হE.

Proposition 2, ATT. Let P be the pencil spanned by E and হE (the so-called Hesse
pencil). Then হnE ∈ P for any n ∈ N.

Proof. This follows from Corollary 2.2 of ATT.

This implies that হ is an action of the Hesse pencil of E. So if you keep iterating the
Hesse derivative over and over again, you will keep landing in the Hesse pencil, but the
j-invariant may be different!

The j-invariant of an elliptic curve is a complex number associated to the isomorphism
class of that curve. Important j-invariants are 1728 and 0.

In much of their paper, the authors DHH consider cubic curves of the form

Γc = V (x3 + y3 + z3 + cxyz)

and explore the discrete dynamical system on c that comes from iterating the Hesse deriva-
tive.

Lemma 3. (Lemma 8 of DHH.) Let c0 ̸= 0. Then the Hesse derivative of Γc0 is হΓc0 = Γc1

where
c1 = −108 + c30

3c20
.

The Hesse derivative of Γ0 is হΓ0 = Γ∞, and the Hesse derivative of Γ∞ is হΓ∞ = Γ∞.
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DHH then talk about a broader family of rational functions

h(x) = −a+ x3

3x2

and analyze their fixed points and critical points under iteration.

Lemma 4. (Lemma 9 of DHH.) The rational function h(x) = −a+ x3

3x2
has a unique real

fixed point

φ = − 3

√
a

4

and the unique critical point

κ =
3
√
2a, h(κ) = − 3

√
a

4
= φ.

Proposition 5. (Proposition 10 of DHH.) Let a ̸= 0. If we define

hn = h ◦ · · · ◦ h︸ ︷︷ ︸
n times

and if κn is a critial point of hn then hn(κn) = φ. Conversely, if hn(x) = φ, then d
dxh

n(x) = 0
or x = φ.

Proposition 6. (Proposition 11 of DHH.) Let χn be the number of critical points of hn.
Then

χ2r+1 = 2× 3r − 1 and χ2r = 3r − 1

for all r ≥ 0.

Proposition 7. (Proposition 12 of DHH) Let Φn be the number of fixed points of hn. Then

Φ2r+1 = 1 and Φ2r = 2χ2r − 1 = 2× 3r − 3

for all r ≥ 0.

Consider the cubic curve in Weierstrass form:

C = y2z − x3 − axz2 − bz3

where a and b are some elements of a field k.
Applying the Hessian to C gives us the curve

H(C)(x, y, z) = 24xy2 − 8a2z3 + 24ax2z + 72bxz2 = 8(3xy2 − a2z3 + 3ax2z + 9bxz2).

Applying the change of coordinates by swapping x and z yields

H(C)(z, y, x)/8 = 3y2z − a2x3 + 3axz2 + 9bx2z.
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Then replacing z with a2z and x with a2x+ 3bz yields

H(C)(a2z, y, a2x+ 3bz)/8 = 3a2y2z − a8x3 + (3a7 + 27a4b2)xz2 + (9a5b+ 54a2b3)z3.

This is almost in Weierstrass form. We now need the first two coefficients to be 1 and −1,
respectively.

Let αy2z + βx3 + γxz2 + δz3 = 3a2y2z − a8x3 + (3a7 + 27a4b2)xz2 + (9a5b + 54a2b3)z3.
Let us transform x to − 3

√
αx and transform y to

√
βy. Then we get

H(C)
(
a2z,

√
βy,−a2 3

√
αx+ 3bz

)
/8 = αβy2z − αβx3 − 3

√
αγxz2 + δz3.

So finally we have

H(C)
(
a2z,

√
βy,−a2 3

√
αx+ 3bz

)
/(8αβ) = y2z − x3 −

3
√
αγ

αβ
xz2 − −δ

αβ
z3

in Weierstrass form.
Now note that the j-invariant of C is j(C) = 1728 · 4a3

4a3 + 27b2
.

Since the curves defined by the polynomials H(C)(x, y, z) and H(C)(a2z,
√
βy,−a2 3√αx+3bz)
8αβ

are isomorphic, they have the same j-invariant.
Mathematica tells us

H(C)
(
a2z,

√
βy,−a2 3

√
αx+ 3bz

)
/(8αβ)

= −xz2

(
−9 3

√
3

3
√
a2b2

a6
−

3
√
3

3
√
a2

a3

)
− z3

(
18b3

a8
+

3b

a5

)
− x3 + y2z.

Using Mathematica, the j-invariant of this is

j(H(C)) = 1728 · 4(a3 + 9b2)3

a6(4a3 + 27b2)
= j(C) · (a

3 + 9b2)3

a9
.

We can also use Macaulay2 code to compute this.
i1:k=frac(QQ[a,b]);

i2:R=k[x,y,z];

i3:f=3*x*y^2-a^2*z^3+3*a*x^2*z+9*b*x*z^2;
f here is the hessian of y2z − x3 − axz2 − bz3, divided by 8.

i4:g=sub(f,x=>z,y=>y,z=>x);

i5:h=sub(g,x=>a^2*x+3*b*z,y=>y,z=>a^2*z);
h here is H(C)(a2z, y, a2x + 3bz)/8. Now we must define the coefficients α, β, γ, and δ, as
above.

i6:A=3*a^2;
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i7:B=-a^8;

i8:G=(3*a^7+27*a^4*b^2);

i9:D=(9*a^5*b+54*a^2*b^3);
Next we will define c = 3

√
α and s =

√
β.

i10:S=R[c,s]/ideal(c^3-A,s^2-B);

i11:i=sub(h,x=>-c*x,y=>s*y,z=>z);

i12:l=i*(1/A)*(1/B)
So now l is H(C)

(
a2z,

√
βy,−a2 3

√
αx+ 3bz

)
/(8αβ) = y2z − x3 −

3√αγ
αβ

xz2 − −δ
αβ
z3.

Now let us define V =
3√αγ
αβ

and U = −δ
αβ

.
i13:V=c*G*(1/A)*(1/B)

i14:U=-D*(1/A)*(1/B)
By definition, the j-invariant must be 1728 ∗ (4V 3)/(4V 3+27U2). We can test the following
equalities.

i15:4*V^3==-12*(a^3+9*b^2)^3*(1/a^16)
o15:true

i16:(4*V^3+27*U^2)==-3*(4*a^3+27*b^2)*(1/a^10)
o16:true

So we can put the j-invariant in terms of a and b as

1728 ∗ −12 ∗ (a3 + 9b2)3

a16
∗ 1

−3
∗ a10

4a3 + 27b2
= 1728 · 4(a3 + 9b2)3

a6(4a3 + 27b2)
= j(C) · (a

3 + 9b2)3

a9
.

Proposition 8. Consider the elliptic curve E with j-invariant j. Then the j-invariant of
হE is (6912− j)3

27j2
.

Proof. Now let us find j(H(C)) in terms of j(C). Note that j(H(C)) = j(C) · (a
3 + 9b2)3

a9
=

j(C) ·
(
a3 + 9b2

a3

)3

. Note that a3 + 9b2

a3
=

4a3 + 36b2

4a3
=

4a3 + 27b2

4a3
+

9b2

4a3
=

1728

j(C)
+

9b2

4a3
.

Now note that 9b2

4a3
− 1728

j(C)
=

9b2

4a3
− 4a3 + 27b2

4a3
=

−4a3 − 18b2

4a3
= −1−2

(
9b2

4a3

)
. Solving

for 9b2

4a3
, we get 9b2

4a3
=

1728j(C)−1 − 1

3
.

Therefore j(H(C)) = j(C) ·
(
1728

j(C)
+

1728j(C)−1 − 1

3

)3

. Simplifying this yields

j(H(C)) =
(4 · 1728− j(C))3

27j(C)2
.
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Therefore we can understand j(H(C)) using the function H : k \ {0} → k defined by

H(j) =
(6912− j)3

27j2
. Note that H(j) = 1728 whenever (6912− j)3 = 46656j2. This gives us

the polynomial j3+25920j2+3 · 69122j− 69123 = (j− 1728)(j+13824)2. This gives us two
roots: one at j = 1728 and one at j = −13824 = −8 · 1728.

Note that H(H(j)) factors as

H(H(j)) =
(j3 + 165888j2 + 143327232j − 330225942528)

3

729(j − 6912)6j2
.

Thus H(H(j)) = j when(
j3 + 165888j2 + 143327232j − 330225942528

)3
= 729(j − 6912)6j3.

This gives us a degree-9 polynomial with roots

j = 1728

j =
3456

7

(
−1− 3i

√
3
)

j =
3456

7

(
−1 + 3i

√
3
)

j = 3456
(
5− 3

√
3
)

j = 3456
(
3
√
3 + 5

)
j = −5184i

√
3− 1

2

√
−4514807808

13
− 1

13
644972544i

√
3 + 1728

j = −5184i
√
3 +

1

2

√
−4514807808

13
− 1

13
644972544i

√
3 + 1728

j = 5184i
√
3− 1

2

√
−4514807808

13
+

644972544i
√
3

13
+ 1728

j = 5184i
√
3 +

1

2

√
−4514807808

13
+

644972544i
√
3

13
+ 1728.

So when the j-invariant of a cubic curve C is one of these nine numbers, then
H(H(C)) ∼= C. Note that for six of these values, we will have H(C) ̸∼= C. For example, H
transposes the two values 3456

(
5− 4

√
3
)

and 3456
(
3
√
3 + 5

)
.

An interesting question is whether there is a nonsingular curve C such that
H(H(C)) = C, and not just isomorphic. Furthermore, is there a nonsingular curve C such
that H(H(C)) = C but H(C) ̸∼= C? If such a curve exists, its j-invariant must be one of
the last six numbers in the above list.

We can classify cubic curves C as stable if H(C) = C, semi-stable if there is an
n > 0 such that Hn(C) = Hn+1(C), periodic if there is an n > 0 such that Hn(C) = C,

5



Jake Kettinger Hesse Derivative Dynamics 7 February 2024

semi-periodic if there are m > n > 0 such that Hm(C) = Hn(C), and aperiodic if
Hm(C) ̸= Hn(C) for all n ̸= m.

Furthermore, we can classify cubic curves C as j-stable if H(C) ∼= C, j-semi-stable if
there is an n > 0 such that Hn(C) ∼= Hn+1(C), j-periodic if there is an n > 0 such that
Hn(C) ∼= C, j-semi-periodic if there are m > n > 0 such that Hm(C) ∼= Hn(C), and
j-aperiodic if Hm(C) ̸∼= Hn(C) for all n ̸= m.

The only stable curves are reducible curves. Examples of semi-stable curves are those
with j-invariant of 0 or 6912.

Examples of j-stable curves are those with j-invariant 1728. Examples of j-semi-stable
curves are those with j-invariant −13824. Examples of j-periodic curves are those with
j-invariant 3456

(
5− 3

√
3
)
. Which curves among these are actually periodic? Examples

of j-semi-periodic curves are those with j-invariant 3456
(
39
√
3± 3i

√
582

√
3− 1008− 67

)
,

which both map to 3456
(
5− 3

√
3
)

under H. Which of these curves are actually semi-
periodic?

Every periodic j is the solution to some Hn(j) = j. There are only finitely many solutions
for a given n ∈ N and so there are only countably many isomorphism classes for periodic
curves. Thus there are uncountably infinitely many aperiodic curves (and even isomorphism
classes of aperiodic curves!).

Is there some kind of distribution? For a given j, Hn(j) will be within some interval x%
of the time? That’s a dynamics question.

Question 9. Let f : P → P1 be an elliptic fibration. What is the action that হ induces on
P1 → P1, factoring through f?

Question 10. Let χn be the number of real critical points of Hn. What is the sequence
χn?

Question 11. Let Φn be the number of real fixed points of Hn. What is the sequence Φn?

Question 12. Fix a number j and a prime p. Does the sequence Hn(j) converge in the
p-adic metric?

Question 13. I predict that there are uncountably many isomorphism classes of aperiodic
curves. What is an example of an aperiodic curve?

Conjecture 14, Peterson. Let j ∈ R be general and consider the sequence {Hn(j)}n∈N.
Define

Ln = #{H i(j) : i ≤ n,H i(j) < 0}
Mn = #{H i(j) : i ≤ n, 0 < H i(j) < 6912}
Rn = #{H i(j) : i ≤ n, 6912 < H i(j)}

. Then
lim
n→∞

Ln

n
= lim

n→∞

Mn

n
= lim

n→∞

Rn

n
=

1

3
.

6



Jake Kettinger Hesse Derivative Dynamics 7 February 2024

We can refine this even further: let
L′
n = #{H i(j) : i ≤ n,H i(j) < −13824}

L′′
n = #{H i(j) : i ≤ n,−13824 < H i(j) < 0}

M ′
n = #{H i(j) : i ≤ n, 0 < H i(j) < 1728}

M ′′
n = #{H i(j) : i ≤ n, 1728 < H i(j) < 6912}

R′
n = #

{
H i(j) : i ≤ n, 6912 < H i(j) < 6912

(
19 + 15

3
√
2 + 12

3
√
4
)}

R′′
n = #

{
H i(j) : i ≤ n, 6912

(
19 + 15

3
√
2 + 12

3
√
4
)
< H i(j)

}
. Then

lim
n→∞

L′
n

n
= lim

n→∞

L′′
n

n
= lim

n→∞

M ′
n

n
= lim

n→∞

M ′′
n

n
= lim

n→∞

R′
n

n
= lim

n→∞

R′′
n

n
=

1

6
.

As a map H : C → C on the Riemann sphere, H has four fixed points:

1728,
3456

7
(−1 + 3i

√
3),

3456

7
(−1− 3i

√
3), and ∞.

The four fixed points have λ multipliers of

−3, −3

2
− i

√
3

2
, −3

2
+ i

√
3

2
, and − 27

respectively. All of the multipliers are have absolute values greater than 1, so all four fixed
points are repelling.

Below one can see the Julia set of H. Note the clusters of points around the origin and
around the point 1728.
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