Differential Forms

Jake Kettinger

UNL

September 24, 2020

Jake Kettinger (UNL)

Recall we've seen $\mathsf{d}_x:\mathfrak{m}_x/\mathfrak{m}_x^2\to\Theta_x^*$ is an isomorphism of vector spaces.

Consider
$$\Phi[X] = \left\{ \varphi : X \to \coprod_{x \in X} \Theta_x^* : \varphi(x) \in \Theta_x^* \right\}$$

For every regular function f, there is a linear form $\mathsf{d}_x f$ on Θ_x . Thus we have $\mathsf{d}f \in \Phi[X]$ satisfying $(\mathsf{d}f)(x) = \mathsf{d}_x f$.

An element $\varphi \in \Phi[X]$ is a regular differential form if each $x \in X$ has a neighborhood U such that $\varphi|_U$ in the k[U]-module $\Phi[U]$ is generated by elements of the form df, with $f \in k[U]$.

That is, there are $f_1, \ldots, f_m, g_1, \ldots, g_m \in k[U]$ such that

$$\varphi|_U = \sum_{i=1}^m g_i \mathsf{d} f_i. \tag{1}$$

We denote the k[X]-module of all regular differential forms on X as $\Omega[X]$.

The map $\mathsf{d}: k[X] \to \Omega[X]$ follows these two rules:

$$d(f+g) = df + dg \qquad \qquad d(fg) = f dg + g df. \qquad (2)$$

The map $\mathsf{d}: k[X] \to \Omega[X]$ follows these two rules:

$$d(f+g) = df + dg \qquad \qquad d(fg) = f dg + g df. \qquad (2)$$

Therefore, for $F \in k[X_1, \ldots, X_n]$ and $x_1, \ldots, x_n \in k[X]$, we have

$$\mathsf{d}(F(x_1, \dots, x_n)) = \sum_{i=1}^n F_{X_i}(x_1, \dots, x_n) \mathsf{d}x_i.$$
(3)

To prove this, one can use (2) to prove $d(x^m) = mx^{m-1}dx$ by induction on *m*. Then one can induct on *n*. Since the differentials $\mathsf{d}_x t_1, \ldots, \mathsf{d}_x t_n$ form a basis on the vector space Θ_x^* for any $x \in \mathbb{A}^n$, any element $\varphi \in \Phi[\mathbb{A}^n]$ can be written uniquely of the form $\varphi = \sum_{i=1}^n \psi_i \mathsf{d} t_i$ for k-valued functions ψ_i .

If $\varphi \in \Omega[\mathbb{A}^n]$, then φ has a form of $\sum_{i=1}^m g_i df_i$ in a neighborhood of any x. Applying rule (3) to f_i , we get $\varphi = \sum_{i=1}^n h_i dt_i$ for $h_i \in \mathcal{O}_x$. Since this expression is unique, the ψ_i must be regular at every $x \in X$ and so $\psi_i \in k[\mathbb{A}^n]$. Thus

$$\Omega[\mathbb{A}^n] = \bigoplus k[\mathbb{A}^n] \mathsf{d} t_i.$$

Let $C \subseteq \mathbb{P}^2$ be a plane curve, and let $\omega \in \Omega[C]$. We will define $\operatorname{ord}_x(\omega)$ as follows:

Let $t \in \mathcal{O}_x$ be a uniformizing parameter $(\operatorname{ord}_x(t) = 1)$. So $\{\mathsf{d}_x t\}$ is a basis for Θ_x^* . There is an $f \in k(C)$ such that $\omega = f\mathsf{d}t$. Then $\operatorname{ord}_x(\omega) := \operatorname{ord}_x(f)$.

Let $C \subseteq \mathbb{P}^2$ be a plane curve, and let $\omega \in \Omega[C]$. We will define $\operatorname{ord}_x(\omega)$ as follows:

Let $t \in \mathcal{O}_x$ be a uniformizing parameter $(\operatorname{ord}_x(t) = 1)$. So $\{\mathsf{d}_x t\}$ is a basis for Θ_x^* . There is an $f \in k(C)$ such that $\omega = f\mathsf{d}t$. Then $\operatorname{ord}_x(\omega) := \operatorname{ord}_x(f)$. To see this is well-defined, choose another uniformizing parameter u. Then there is an $h \in k(C)$ such that $\mathsf{d}_x t = h\mathsf{d}_x u$ where $\operatorname{ord}_x(h) = 0$.

Let $C \subseteq \mathbb{P}^2$ be a plane curve, and let $\omega \in \Omega[C]$. We will define $\operatorname{ord}_x(\omega)$ as follows:

Let $t \in \mathcal{O}_x$ be a uniformizing parameter $(\operatorname{ord}_x(t) = 1)$. So $\{\mathsf{d}_x t\}$ is a basis for Θ_x^* . There is an $f \in k(C)$ such that $\omega = f\mathsf{d}t$. Then $\operatorname{ord}_x(\omega) := \operatorname{ord}_x(f)$. To see this is well-defined, choose another uniformizing parameter u. Then there is an $h \in k(C)$ such that $\mathsf{d}_x t = h\mathsf{d}_x u$ where $\operatorname{ord}_x(h) = 0$.

Can be rewritten $\operatorname{ord}_x(\omega) = -\operatorname{ord}_x(dt/\omega)$.

Define div $(\omega) = \sum_{x \in X} \operatorname{ord}_x(\omega) x$.

Example: $C = V(YZ - X^2)$

Let $C = V(YZ - X^2) \subseteq \mathbb{P}^2$. Then $k(C) = k(x, y)/(y - x^2)$ where x = X/Z and y = Y/Z. Let $\omega = dx$.

Let $C = V(YZ - X^2) \subseteq \mathbb{P}^2$. Then $k(C) = k(x, y)/(y - x^2)$ where x = X/Z and y = Y/Z. Let $\omega = dx$.

Let P = (a, b, c) where $c \neq 0$. Then \mathcal{O}_P has uniformizing parameter cx - a. So $\operatorname{ord}_P(\omega) = -\operatorname{ord}_P(\mathsf{d}(cx - a)/\mathsf{d}x) = -\operatorname{ord}_P(c) = 0$.

Let $C = V(YZ - X^2) \subseteq \mathbb{P}^2$. Then $k(C) = k(x, y)/(y - x^2)$ where x = X/Z and y = Y/Z. Let $\omega = \mathsf{d}x$.

Let P = (a, b, c) where $c \neq 0$. Then \mathcal{O}_P has uniformizing parameter cx - a. So $\operatorname{ord}_P(\omega) = -\operatorname{ord}_P(\mathsf{d}(cx - a)/\mathsf{d}x) = -\operatorname{ord}_P(c) = 0$.

Let Q = (0, 1, 0). Then \mathcal{O}_Q has uniformizing parameter x/y = X/Ysince $\operatorname{ord}_Q(X/Y) = 1 - 0 = 1$. Note x/y = 1/x and

$$\frac{\mathsf{d}(1/x)}{\mathsf{d}x} = -\frac{\mathsf{d}x}{x^2\mathsf{d}x} = -1/x^2.$$

Then $\operatorname{ord}_Q(\omega) = -\operatorname{ord}_Q(-(1/x)^2) = -2$. Thus $\operatorname{div}(\omega) = -2Q$.

Let V be a k-vector space. Define the r^{th} tensor power to be $T^r V = V^{\otimes r}$. Then denote $TV = \bigoplus_{i=1}^n T^i V$ and $\Lambda V = TV/(v \otimes v)$.

Let $\{v_1, \ldots, v_n\}$ be a basis for V. The r^{th} exterior power $\Lambda^r V$ is the *k*-vector space generated by exterior products of the form $v_{i_1} \wedge \cdots \wedge v_{i_r}$ with $1 \leq i_1 < \cdots < i_r \leq n$. Thus, $\dim_k \Lambda^r V = \binom{n}{r}$.

• For
$$\sigma \in S_r$$
, $v_1 \wedge \cdots \wedge v_r = \operatorname{sgn}(\sigma) \left(v_{\sigma(1)} \wedge \cdots \wedge v_{\sigma(r)} \right)$.

• For $\alpha \in \Lambda^a V$ and $\beta \in \Lambda^b V$, $\alpha \wedge \beta = (-1)^{ab} \beta \wedge \alpha \in \Lambda^{a+b} V$.

Denote
$$\Phi^r[X] = \{f : X \to \coprod_{x \in X} \Lambda^r \Theta_x^* : f(x) \in \Lambda^r \Theta_x^* \}.$$

The exterior product on the $\Phi^r[X]$ sets is given by

$$(\omega_r \wedge \omega_s)(x) = \omega_r(x) \wedge \omega_s(x).$$

An element $\varphi \in \Phi^r[X]$ is a regular differential *r*-form if any point $x \in X$ has a neighborhood *U* such that $\varphi|_U$ is generated by $df_1 \wedge \cdots \wedge df_r$. All regular differential *r*-forms on *X* form a k[X]-module $\Omega^r[X]$.

Jake Kettinger (UNL)

Theorem: Any nonsingular point x of an n-dimensional variety X has a neighborhood U such that $\Omega^r[U]$ is a free k[U]-module of rank $\binom{n}{r}$.

For any local parameters u_1, \ldots, u_n on x, we can write $\omega \in \Omega^n[U]$ as

$$\omega = g \mathsf{d} u_1 \wedge \cdots \wedge \mathsf{d} u_n.$$

Fix $x \in X$. For any two bases $\{\mathsf{d}_x u_1, \ldots, \mathsf{d}_x u_n\}$ and $\{\mathsf{d}_x v_1, \ldots, \mathsf{d}_x v_n\}$ on Θ_x^* , there exist $h_{ij} \in k[U]$ such that

$$\mathsf{d}u_i = \sum_{j=1}^n h_{ij} \mathsf{d}v_j.$$

We have det $|h_{ij}(x)| := J\left(\frac{u_1,\dots,u_n}{v_1,\dots,v_n}\right)(x) \neq 0$. This is called the *Jacobian*.

Thus for $\omega = g \mathsf{d} u_1 \wedge \cdots \wedge \mathsf{d} u_n$, $\operatorname{ord}_x(\omega) := \operatorname{ord}_x(g)$ is well-defined. Therefore $\operatorname{div}(\omega) = \sum_{x \in X} \operatorname{ord}_x(\omega)$ is well-defined.

We have seen $\mathsf{d}:k[X]\to\Omega^1[X].$ Now consider $\mathsf{d}:\Omega^1[X]\to\Omega^2[X]$ given by

$$\mathsf{d}(f\mathsf{d}t) = \mathsf{d}f \wedge \mathsf{d}t.$$

We have seen $\mathsf{d}:k[X]\to\Omega^1[X].$ Now consider $\mathsf{d}:\Omega^1[X]\to\Omega^2[X]$ given by

$$\mathsf{d}(f\mathsf{d}t) = \mathsf{d}f \wedge \mathsf{d}t.$$

Indeed, we can define $\mathsf{d}: \Omega^r[X] \to \Omega^{r+1}[X]$ as

$$\mathsf{d}(f\mathsf{d} u_1\wedge\cdots\wedge\mathsf{d} u_r)=\mathsf{d} f\wedge\mathsf{d} u_1\wedge\cdots\wedge\mathsf{d} u_r.$$

Note under this definition

$$\mathsf{d}(\mathsf{d} u_1 \wedge \cdots \wedge \mathsf{d} u_r) = \mathsf{d} 1 \wedge \mathsf{d} u_1 \wedge \cdots \wedge \mathsf{d} u_r = 0.$$

Thus $d^2 = 0$. We also get $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^r (\alpha \wedge d\beta)$ where α is an *r*-form.

The de Rham complex is the cochain complex

$$0 \to k(X) \stackrel{\mathsf{d}}{\to} \Omega^1(X) \stackrel{\mathsf{d}}{\to} \Omega^2(X) \to \cdots$$

The *i*th de Rham cohomology of $X H^i_{dR}(X) = \ker d^i / \operatorname{im} d^{i-1}$.

For example $H^0_{dR}(X) \cong k$ is the space of constant functions on X.

Let dim X = n, $\omega = f du_1 \wedge \cdots \wedge du_n$, and let U be open. Then

$$\int_U \omega = \int_U f(u_1, \dots, u_n) \mathsf{d} u_1 \cdots \mathsf{d} u_n.$$