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Steiner Triple Systems

Definition

A Steiner triple system is the pair (S,T ) where S is a set of elements
and T ⊂ P(S) is a set of triples, where for every pair of distinct elements
s, s ′ ∈ S , there is a unique t ∈ T such that s, s ′ ∈ t.
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Size of an STS

If #S = n, then #T = n(n − 1)/6. Thus n(n − 1) ≡ 0 mod 6.
Furthermore, n must be odd because S \ {s} can be partitioned into pairs
via {t \ {s} : s ∈ t ∈ T}.
Thus n ≡ 1 or 3 mod 6.

Theorem

A Steiner triple system of order n exists if and only if n ≡ 1 or 3 mod 6.
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Quasigroups/Latin Squares

Definition

A quasigroup (aka a Latin square) is a nonempty set Q and a binary
operation ◦ such that for any x , y ∈ Q, there exist unique z ,w ∈ Q such
that x ◦ z = w ◦ x = y .

◦ 1 2 3

1 1 3 2

2 3 2 1

3 2 1 3

◦ 1 2 3 4

1 1 3 2 4

2 3 2 4 1

3 2 4 1 3

4 4 1 3 2

Two commutative quasigroups. The first is idempotent, the second is
half-idempotent. There is a commutative idempotent quasigroup of any
odd size, and a commutative half-idempotent quasigroup of any even size.
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3 mod 6: The Bose Construction

Let (Q, ◦) = {1, . . . , 2n + 1} be a commutative idempotent quasigroup.
Then we can form an STS (S,T ) where

S = Q ×Z/3Z

and T comprises triples of the forms

{(i , 0), (i , 1), (i , 2)} : i ∈ Q,

{(i , a), (j , a), (i ◦ j , a+ 1)} : i ̸= j ∈ Q, a ∈ Z/3Z.
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1 mod 6: The Skolem Construction

Let (Q, ◦) = {1, . . . , 2n} be a commutative half-idempotent quasigroup.
Then we can form an STS (S,T ) where

S = (Q ×Z/3Z) ∪ {∞}

and T comprises triples of the forms

{(i , 0), (i , 1), (i , 2)} : 1 ≤ i ≤ n,

{(i , a), (j , a), (i ◦ j , a+ 1)} : i ̸= j ∈ Q, a ∈ Z/3Z,
{∞, (n + i , a), (i , a+ 1)} : 1 ≤ i ≤ n, a ∈ Z/3Z.
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Oriented Triples

We can create an orientation for a triple by drawing little arrows.

We can orient (S,T ) by placing an orientation on every t ∈ T .
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Oriented Steiner Triple Systems

Definition

Given a Steiner triple system (S,T ), an orientation on a triple
t = {x1, x2, x3} ∈ T is a function ft : t × t → {−1, 0, 1} such that

ft(xi , xi ) = 0,

ft(xi , xj) = −ft(xj , xi ) ̸= 0 when i ̸= j ,

ft(xi , xj) = −ft(xi , xk) ̸= 0 when i , j , k are distinct.

Furthermore, given an orientation ft for all t ∈ T , an orientation on the
Steiner triple system is a function f : S × S → {−1, 0, 1} such that
f |t×t = ft for all t ∈ T .
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The Steiner Product

Now let (S,T , f ) be an oriented Steiner triple system and consider the
binary operation · × · : S → RS such that for s ̸= s ′

s × s ′ := f (s, s ′)s ′′

where {s, s ′, s ′′} form a triple. If s = s ′, then s × s ′ = 0.

Definition

Let v ,w ∈ RS . Then the Steiner product of v and w is

v × w :=
∑
s∈S

∑
s′∈S

vsws′(s × s ′).
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Connection to the Cross Product

Definition

A cross product on the vector space Rn is a binary operation × that
satisfies the following three properties:

1 × is bilinear,

2 v · (v × w) = w · (v × w) = 0 for all v ,w ∈ Rn,

3 |v |2|w |2 = |v × w |2 + (v · w)2 for all v ,w ∈ Rn.

The cross product will only exist for n = 3 and n = 7.
The Steiner product will satisfy the first two properties, but will generally
fail the third.
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Example 1: The Octonions

(S,T , f ) = {[1, 2, 3], [1, 4, 5], [1, 7, 6], [2, 4, 6], [2, 5, 7], [3, 4, 7], [3, 6, 5]}

The imaginary part of the octonions form an oriented Steiner triple
system. The Steiner product in this case is the cross product on R7.

Jake Kettinger (CSU) Oriented Steiner Systems 27 March 2025 11 / 18



Example 2: The Notonions

A different orientation on the same Steiner system yields different behavior.

(s1 + s5)× (s3 + s7) = 0,

so

4 = |s1+ s5|2|s3+ s7|2 ̸= |(s1+ s5)× (s3× s7)|+((s1+ s5) · (s3+ s7))
2 = 0.
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Classifying Oriented Steiner Triple Systems

The STS’s of sizes 7 and 9 are unique. There are 2 of size 13, 80 of size
15, and 11084874829 of size 19. How many when we have to keep track
of orientation?

Definition

An isomorphism of oriented Steiner triple systems is a bijection
ϕ : (S,T , f ) → (S ′,T ′, f ′) such that ϕ(t) ∈ T ′ for all t ∈ T and
f (s1, s2) = f ′(ϕ(s1), ϕ(s2)) for all s1, s2 ∈ S.
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Classifying Oriented STS(7)’s and STS(9)’s

Via Maple computations, Peterson and I have arrived at the following
results.

Theorem (K–, Peterson)

There are four isomorphism classes of oriented STS(7)’s; two classes have
automorphism group C7 ⋊ C3, and two have automorphism group C3.

Theorem (K–, Peterson)

There are 16 isomorphism classes of oriented STS(9)’s; one class has
automorphism group C 2

3 ⋊ C3, one has automorphism group C 2
3 , seven

with C3, and seven with trivial automorphism group.

Sizes 13 and above remain mysterious.
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Aut(S,T , f ) and Aut(RS ,×)

Every ϕ ∈ Aut(S,T , f ) can be linearly extended to an automorphism
ϕ∗ ∈ Aut(RS). Then

ϕ∗(v × w) = ϕ∗(v)× ϕ∗(w),

so ϕ∗ commutes with the Steiner product (ϕ∗ ∈ Aut(RS ,×)).

Does every f ∈ Aut(RS ,×) come from the linear extension of an
automorphism of (S,T , f ) this way?
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The Steiner Product as Matrix Multiplication

Order the OSTS (S,T , f ) = ({s1, . . . , sn},T , f ). Denote

[v1s1 + · · ·+ vnsn] =

v1
...
vn


and define the n × n matrix M by

Mi ,j = si × sj .

Then
v × w = tr([v ]TM[w ]).
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A Rank Analysis

Given a v ∈ RS , we can construct a matrix A(v) such that the (i , j)-entry
is the R-coefficient of the sj term of the Steiner product v × si for all
1 ≤ i , j ≤ n.
Then kerA(v) = {w ∈ RS : v × w = 0}. So v is a “zero-divisor” if and
only if rank A(v) < n − 1.

Example

Consider v = s1 + s5 from the notonion example. Then

A(v) =



0 0 0 1 0 0 0
0 0 1 0 0 0 −1
0 −1 0 0 0 −1 0
−1 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 −1
0 1 0 0 0 1 0


.
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A Dynamics Problem

Given an OSTS (S,T , f ) and v ,w0 ∈ RS , defining wi := v × wi−1 for
1 ≤ i , we get an ascending chain of vector subspaces

⟨v ,w0⟩ ⊆ ⟨v ,w0,w1⟩ ⊆ ⟨v ,w0,w1,w2⟩ ⊆ · · · .

At what step does this chain achieve its maximum? Does that depend on
the rank of A(v)?

Jake Kettinger (CSU) Oriented Steiner Systems 27 March 2025 18 / 18


