Oriented Steiner Systems

Jake Kettinger

Colorado State University

27 March 2025

Jake Kettinger (CSU)

Oriented Steiner Systems

∃ >

Steiner Triple Systems

Definition

A **Steiner triple system** is the pair (S, T) where S is a set of elements and $T \subset \mathcal{P}(S)$ is a set of triples, where for every pair of distinct elements $s, s' \in S$, there is a unique $t \in T$ such that $s, s' \in t$.

Oriented Steiner Systems

Size of an STS

If #S = n, then #T = n(n-1)/6. Thus $n(n-1) \equiv 0 \mod 6$. Furthermore, n must be odd because $S \setminus \{s\}$ can be partitioned into pairs via $\{t \setminus \{s\} : s \in t \in T\}$. Thus $n \equiv 1$ or 3 mod 6.

Theorem

A Steiner triple system of order n exists if and only if $n \equiv 1$ or $3 \mod 6$.

Oriented Steiner Systems

Definition

A quasigroup (aka a Latin square) is a nonempty set Q and a binary operation \circ such that for any $x, y \in Q$, there exist unique $z, w \in Q$ such that $x \circ z = w \circ x = y$.

0	1	10	2		0	1	2	3	4
	T	2	с С	_	1	1	3	2	4
1	1	3	2	_	2	3	2	4	1
2	3	2	1		2	2	-	1	2
3	2	1	3	-	3	2	4	L	5
5	2	1	5		4	4	1	3	2

Two **commutative** quasigroups. The first is **idempotent**, the second is **half-idempotent**. There is a commutative idempotent quasigroup of any odd size, and a commutative half-idempotent quasigroup of any even size.

Let $(Q, \circ) = \{1, \dots, 2n + 1\}$ be a commutative idempotent quasigroup. Then we can form an STS (S, T) where

$$\mathcal{S} = Q \times \mathbb{Z}/3\mathbb{Z}$$

and T comprises triples of the forms

$$\{(i,0), (i,1), (i,2)\} : i \in Q, \\ \{(i,a), (j,a), (i \circ j, a+1)\} : i \neq j \in Q, a \in \mathbb{Z}/3\mathbb{Z}.$$

Let $(Q, \circ) = \{1, ..., 2n\}$ be a commutative half-idempotent quasigroup. Then we can form an STS (S, T) where

$$\mathcal{S} = (Q \times \mathbb{Z}/3\mathbb{Z}) \cup \{\infty\}$$

and T comprises triples of the forms

$$\{(i,0), (i,1), (i,2)\} : 1 \le i \le n, \\ \{(i,a), (j,a), (i \circ j, a+1)\} : i \ne j \in Q, a \in \mathbb{Z}/3\mathbb{Z}, \\ \{\infty, (n+i,a), (i,a+1)\} : 1 \le i \le n, a \in \mathbb{Z}/3\mathbb{Z}.$$

We can create an orientation for a triple by drawing little arrows.

We can orient (S, T) by placing an orientation on every $t \in T$.

Definition

Given a Steiner triple system (S, T), an **orientation on a triple** $t = \{x_1, x_2, x_3\} \in T$ is a function $f_t : t \times t \to \{-1, 0, 1\}$ such that

 $f_t(x_i,x_i)=0,$

$$f_t(x_i, x_j) = -f_t(x_j, x_i) \neq 0$$
 when $i \neq j$,

 $f_t(x_i, x_j) = -f_t(x_i, x_k) \neq 0$ when i, j, k are distinct.

Furthermore, given an orientation f_t for all $t \in T$, an **orientation on the Steiner triple system** is a function $f : S \times S \rightarrow \{-1, 0, 1\}$ such that $f|_{t \times t} = f_t$ for all $t \in T$.

3

Now let (S, T, f) be an oriented Steiner triple system and consider the binary operation $\cdot \times \cdot : S \to \mathbb{R}^S$ such that for $s \neq s'$

$$s \times s' := f(s, s')s''$$

where $\{s, s', s''\}$ form a triple. If s = s', then $s \times s' = 0$.

Now let (S, T, f) be an oriented Steiner triple system and consider the binary operation $\cdot \times \cdot : S \to \mathbb{R}^S$ such that for $s \neq s'$

$$s \times s' := f(s, s')s''$$

where $\{s, s', s''\}$ form a triple. If s = s', then $s \times s' = 0$.

Definition

Let $v, w \in \mathbb{R}^{S}$. Then the **Steiner product** of v and w is

$$v \times w := \sum_{s \in S} \sum_{s' \in S} v_s w_{s'}(s \times s').$$

Definition

A **cross product** on the vector space \mathbb{R}^n is a binary operation \times that satisfies the following three properties:

 \bigcirc \times is bilinear,

$$\ 2 \ \ v \cdot (v \times w) = w \cdot (v \times w) = 0 \text{ for all } v, w \in \mathbb{R}^n,$$

$$\ \, {\bf 0} \ \, |v|^2|w|^2=|v\times w|^2+(v\cdot w)^2 \ \, {\rm for \ \, all } \ \, v,w\in \mathbb{R}^n.$$

The cross product will only exist for n = 3 and n = 7. The Steiner product will satisfy the first two properties, but will generally fail the third.

10 / 18

Example 1: The Octonions

 $(S, T, f) = \{[1, 2, 3], [1, 4, 5], [1, 7, 6], [2, 4, 6], [2, 5, 7], [3, 4, 7], [3, 6, 5]\}$

The imaginary part of the octonions form an oriented Steiner triple system. The Steiner product in this case is the cross product on \mathbb{R}^7 .

Example 2: The Notonions

A different orientation on the same Steiner system yields different behavior.

$$(s_1+s_5)\times(s_3+s_7)=0,$$

so

$$4 = |s_1 + s_5|^2 |s_3 + s_7|^2 \neq |(s_1 + s_5) \times (s_3 \times s_7)| + ((s_1 + s_5) \cdot (s_3 + s_7))^2 = 0.$$

The STS's of sizes 7 and 9 are unique. There are 2 of size 13, 80 of size 15, and 11084874829 of size 19. How many when we have to keep track of orientation?

Definition

An **isomorphism** of oriented Steiner triple systems is a bijection $\phi : (S, T, f) \rightarrow (S', T', f')$ such that $\phi(t) \in T'$ for all $t \in T$ and $f(s_1, s_2) = f'(\phi(s_1), \phi(s_2))$ for all $s_1, s_2 \in S$.

Via Maple computations, Peterson and I have arrived at the following results.

Theorem (K–, Peterson)

There are four isomorphism classes of oriented STS(7)'s; two classes have automorphism group $C_7 \rtimes C_3$, and two have automorphism group C_3 .

14/18

Via Maple computations, Peterson and I have arrived at the following results.

Theorem (K–, Peterson)

There are four isomorphism classes of oriented STS(7)'s; two classes have automorphism group $C_7 \rtimes C_3$, and two have automorphism group C_3 .

Theorem (K–, Peterson)

There are 16 isomorphism classes of oriented STS(9)'s; one class has automorphism group $C_3^2 \rtimes C_3$, one has automorphism group C_3^2 , seven with C_3 , and seven with trivial automorphism group.

Sizes 13 and above remain mysterious.

Every $\phi \in Aut(S, T, f)$ can be linearly extended to an automorphism $\phi^* \in Aut(\mathbb{R}^S)$. Then

$$\phi^*(\mathbf{v}\times\mathbf{w})=\phi^*(\mathbf{v})\times\phi^*(\mathbf{w}),$$

so ϕ^* commutes with the Steiner product $(\phi^* \in Aut(\mathbb{R}^S, \times))$.

Every $\phi \in Aut(S, T, f)$ can be linearly extended to an automorphism $\phi^* \in Aut(\mathbb{R}^S)$. Then

$$\phi^*(\mathbf{v}\times\mathbf{w})=\phi^*(\mathbf{v})\times\phi^*(\mathbf{w}),$$

so ϕ^* commutes with the Steiner product $(\phi^* \in Aut(\mathbb{R}^S, \times))$.

Does every $f \in Aut(\mathbb{R}^{S}, \times)$ come from the linear extension of an automorphism of (S, T, f) this way?

The Steiner Product as Matrix Multiplication

Order the OSTS $(S, T, f) = (\{s_1, \ldots, s_n\}, T, f)$. Denote

$$[v_1s_1+\cdots+v_ns_n]=\binom{v_1}{\vdots}_{v_n}$$

and define the $n \times n$ matrix M by

$$M_{i,j} = s_i \times s_j.$$

Then

$$v \times w = \operatorname{tr}([v]^T M[w]).$$

A Rank Analysis

Given a $v \in \mathbb{R}^{S}$, we can construct a matrix A(v) such that the (i, j)-entry is the \mathbb{R} -coefficient of the s_{j} term of the Steiner product $v \times s_{i}$ for all $1 \leq i, j \leq n$. Then ker $A(v) = \{w \in \mathbb{R}^{S} : v \times w = 0\}$. So v is a "zero-divisor" if and only if rank A(v) < n - 1.

17/18

A Rank Analysis

Given a $v \in \mathbb{R}^{S}$, we can construct a matrix A(v) such that the (i, j)-entry is the \mathbb{R} -coefficient of the s_{j} term of the Steiner product $v \times s_{i}$ for all $1 \leq i, j \leq n$. Then ker $A(v) = \{w \in \mathbb{R}^{S} : v \times w = 0\}$. So v is a "zero-divisor" if and only if rank A(v) < n - 1.

Example

Consider $v = s_1 + s_5$ from the notonion example. Then

$$A(v) = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Jake Kettinger (CSU)

Given an OSTS (S, T, f) and $v, w_0 \in \mathbb{R}^S$, defining $w_i := v \times w_{i-1}$ for $1 \leq i$, we get an ascending chain of vector subspaces

$$\langle v, w_0 \rangle \subseteq \langle v, w_0, w_1 \rangle \subseteq \langle v, w_0, w_1, w_2 \rangle \subseteq \cdots$$

At what step does this chain achieve its maximum? Does that depend on the rank of A(v)?