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What is a configuration?

Definition
A set of points and lines in the plane is a configuration if every point is
on the same number of lines and every line contains the same number of

points.

Figure: The left is a configuration, but the right is not.
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We use the notation (ap, c4) to refer to configurations comprising a points
with b lines per point, and ¢ lines with d points per line. If a = ¢ and
b = d, we can just call it an (ap)-configuration.

Figure: The left is a (163, 124)-configuration, the right is (123).
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Geometric and combinatorial configurations

We can label the points and lines of a configuration like so and make a
table.

A B CDEFEVFGHTIJKTLMN O P
a e a b ¢c e ¢c a a g d c f b b d
b f i g f i e d g j j h h d i h
c g j U j 1l k e h k I 1 i f k k

This is a combinatorial configuration, as opposed to a geometric
configuration.
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Can we go the other way?

Let's take a look at the table

AlB|C|D|E|F|G
alala|b|b|c|c
b|d|f|d|el|d]e
clelgl|flglg]|f

This is a combinatorial (73)-configuration. But is it geometrically

realizable? No! This is a special configuration called the Fano plane, and

it is only realizable in special geometric spaces, not in the regular

Euclidean plane.
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https://www.geogebra.org/calculator
https://www.geogebra.org/calculator

Cyclic Configurations

Given any number n > 7 and a starting seed of (0,1, 3), you can make a
combinatorial (n3) configuration that places point p; at the intersection of
lines 0, 1, and 3, and point p; at the intersection of lines i mod n, 1 4/

mod n, and 3+ /7 mod n. Like so:

po | P | p2| P3| palps|ps|pr| s
0|12 |34 |5 |6|7]|8
1123|4567 8]0
314|567 |8 |0]1]2
This is called a cyclic configuration, denoted Cs(n).
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The smallest geometric (n3)-configurations are (93). One of them is
(3(9). Another is known as the Pappus configuration.

Figure: Pappus’ configuration
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https://www.geogebra.org/calculator

Augmenting an (n3)

Below is a table for the Pappus configuration we saw:
1|2 |B|4]5]|6]7]8]
AIDIG|A|B|CI|A
B|E|H|D|E| F |F

ClFIWB|G|H W |H

We can add a new point and line and reconfigure this to get a new
(103)-configuration:

m O]

[9]
B
D
G|

1] 2] 3 [4][5]|6]7]8]9]10
Al D| G |A|lB|Cc|A|lCc|B|F
Bl E | H D |F|F W b
clFlE|c|lH||H ¢ B B

Undoing an augmentation is reducing. Some (n3) configurations are
irreducible.
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Configurations in 3D!

We can also make configurations in 3D! Two of the best known are the
Reye configuration and the Schlafli double six.

Figure: The (124,163) Reye configuration (left) and the (302, 125) Schlafli double
six (right)
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https://www.geogebra.org/m/grjzgjsm
https://www.geogebra.org/3d/m29mxh5a

Thanks for coming!
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