Configurations with Geogebra!

Jake Kettinger

Colorado State University

14 November 2024

Jake Kettinger (CSU)

1/10

Definition

A set of points and lines in the plane is a **configuration** if every point is on the same number of lines and every line contains the same number of points.

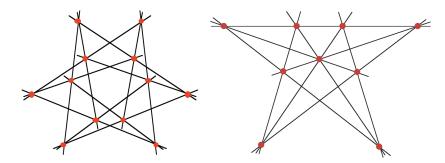


Figure: The left is a configuration, but the right is not.

Notation

We use the notation (a_b, c_d) to refer to configurations comprising *a* points with *b* lines per point, and *c* lines with *d* points per line. If a = c and b = d, we can just call it an (a_b) -configuration.

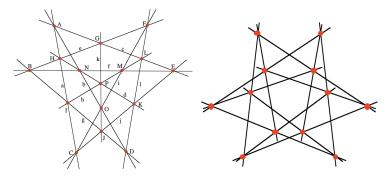
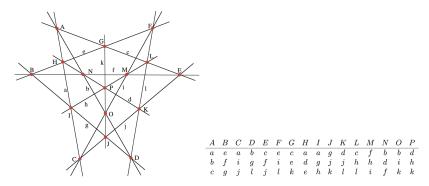


Figure: The left is a $(16_3, 12_4)$ -configuration, the right is (12_3) .

Geometric and combinatorial configurations

We can label the points and lines of a configuration like so and make a table.



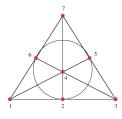
This is a **combinatorial configuration**, as opposed to a **geometric configuration**.

Can we go the other way?

Let's take a look at the table

A	В	С	D	Ε	F	G
а	а	а	b	b	с	С
b	d	f	d	e	d	е
с	е	g	f	g	g	f

This is a combinatorial (7_3) -configuration. But is it geometrically realizable? No! This is a special configuration called the **Fano plane**, and it is only realizable in special geometric spaces, not in the regular Euclidean plane.



Given any number $n \ge 7$ and a starting seed of (0, 1, 3), you can make a combinatorial (n_3) configuration that places point p_1 at the intersection of lines 0, 1, and 3, and point p_i at the intersection of lines $i \mod n$, $1 + i \mod n$, and $3 + i \mod n$. Like so:

p_0	p_1	<i>p</i> ₂	<i>p</i> 3	<i>p</i> 4	p_5	p_6	<i>p</i> 7	p_8
0	1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8	0
3	4	5	6	7	5 6 8	0	1	2

This is called a **cyclic** configuration, denoted $C_3(n)$.

The smallest geometric (n_3) -configurations are (9_3) . One of them is $C_3(9)$. Another is known as the Pappus configuration.

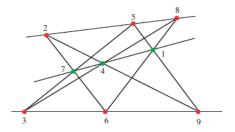
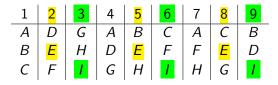


Figure: Pappus' configuration

Augmenting an (n_3)

Below is a table for the Pappus configuration we saw:



We can add a new point and line and reconfigure this to get a new (10_3) -configuration:

1	2	3	4	5	6	7	8	9	10
A	D	G	A	В	С	Α	С	В	<u>E'</u>
В	<i>E</i> ′	G H <mark>E'</mark>	D	1'	F	F	J	D	1'
С	F	<i>E</i> ′	G	Н	1'	Н	G	J	J

Undoing an augmentation is **reducing**. Some (n_3) configurations are **irreducible**.

We can also make configurations in 3D! Two of the best known are the Reye configuration and the Schläfli double six.

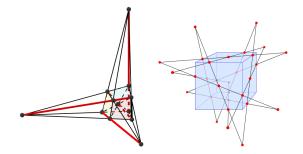


Figure: The $(12_4, 16_3)$ Reye configuration (left) and the $(30_2, 12_5)$ Schläfli double six (right)

Thanks for coming!

Happy Math Day!

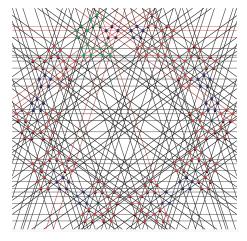


Figure: A floral (1205, 1504)-configuration

Jake Kettinger (CSU)

æ

イロト イヨト イヨト イヨト