
Math 221 Laplace Transform Key Spring 2023

Part 0: The Laplace Transform

Definition 0.1. Given a function f(t) defined in the interval [0,∞), the Laplace transform
of f is

L{f(t)}(s) =
∫ ∞

0

f(t)e−stdt.

Example 0.1. Given f(t) = 1,

L{f(t)}(s) =
∫ ∞

0

1e−stdt = −1

s
e−st

∣∣∣∣∞
0

=
1

s
.

Example 0.2. Given f(t) = t,

L{f(t)}(s) =
∫ ∞

0

te−stdt.

Choosing

u = t dv = e−stdt

du = dt v = −1

s
e−st

and using integration by parts
∫
udv = uv −

∫
vdu, we get

− t

s
e−st

∣∣∣∣∞
0

+

∫ ∞

0

1

s
e−stdt = [0− 0]− 1

s2
e−st

∣∣∣∣∞
0

=
1

s2
.

Example 0.3. Given f(t) = eat,

L{f(t)}(s) =
∫ ∞

0

eate−stdt =

∫ ∞

0

e(a−s)tdt =
1

a− s
e(a−s)t

∣∣∣∣∞
0

.

Note that lim
t→∞

e(a−s)t =

{
∞ if a > s

0 if a < s
, so the Laplace transform can only be defined on the

domain a < s, or (a,∞).
Continuing in the case a < s,

1

a− s
e(a−s)t

∣∣∣∣∞
0

= 0− 1

a− s
=

1

s− a
.

Part 1: The Chart
Here is a table of common Laplace transforms:
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f(t) L{f(t)}(s)

1
1

s

tn
n!

sn+1

eat
1

s− a

cos(kt)
s

s2 + k2

sin(kt)
k

s2 + k2

cosh(kt)
s

s2 − k2

sinh(kt)
k

s2 − k2

Note that cosh(t) =
et + e−t

2
and sinh(t) =

et − e−t

2
.

Part 2: Linearity and Inverse Laplace Transforms
Also note that the Laplace transform acts linearly on its inputs: meaning that if we have

functions f(t) and g(t) and constants a and b, then

L{af(t) + bg(t)} = aL{f(t)}+ bL{g(t)}.

Example 2.1.

L
{
3 + 5t2 + t7 − 8 cos(10t)

}
= 3L{1} = 5L{t2}+ L{t7} − 8L{cos(10t)}

=
3

s
+

10

s3
+

7!

s8
− 8

s

s2 + 100
.

Example 2.2.

L
{
11− 6 sin(

√
3t) + 15e−4t + 15t3

}
=

11

s
− 6

√
3

s2 + 3
+

15

s+ 4
+

90

s4
.

The inverse Laplace transform also acts linearly: so given functions F (s) and G(s) and
constants a and b,

L−1{aF (s) + bG(s)} = aL−1{F (s)}+ bL−1{G(s)}.
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To calculate inverse Laplace transforms, we will largely rely on The Chart in addition to
rules like linearity instead of having an explicit formula.

F (s) L−1{F (s)}(t)

1

s
1

1

sn
tn−1

(n− 1)!

1

s− a
eat

s

s2 + k2
cos(kt)

1

s2 + k2

sin(kt)

k

s

s2 − k2
cosh(kt)

1

s2 − k2

sinh(kt)

k

Example 2.3.

L−1

{
1

s2 + 9
− 10s

s2 + 11
+

8

s
− 15

s5

}
= L−1

{
1

s2 + 9

}
− 10L−1

{
s

s2 + 11

}
+ 8L−1

{
1

s

}
− 15L−1

{
1

s2

}
=

sin(3t)

3
− 10 cos(

√
11t) + 8− 15t.

Example 2.4.

L−1

{
5

s5
+

1

6s6
+

7s

4s2 + 100
+

15

2s− 100

}
= 5L−1

{
1

s5

}
+

1

6
L−1

{
1

s6

}
+

7

4
L−1

{
s

s2 + 25

}
+

15

2
L−1

{
1

s− 50

}
= 5

t4

4!
+

1

6
· t

5

5!
+

7

4
cos(5t) +

15

2
e50t.
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Part 3: The First Translation Theorem

Theorem 3.1. Given L{f(t)}(s) = F (s) and a is a contstant, then

L{eatf(t)} = F (s− a).

To put this another way,
L−1{F (s− a)} = eatf(t).

Example 3.1. If we take L{e5tt3} and ignore the e5t, we have L{t3}, which is
3!

s4
. Now

using that e5t to shift the result by 5, we get
3!

(s− 5)4
as our answer.

Example 3.2. If we look at L{e−2t cos(7t)} and ignore the e−2t, we are left with L{cos(7t)},
which is

s

s2 + 49
. Now using the e−2t to shift the result by −2, we get

s+ 2

(s+ 2)2 + 49
as our

answer.

Example 3.3. If we look at L−1

{
9

(s+ 10)2 + 4

}
, we can first ignore the shift by 10 and

look at L−1

{
9

s2 + 4

}
. From the chart, we can see that this is

9

2
sin(2t). Now to compensate

for the shift by 10, we need to multiply our result by e−10t to get
9

2
e−10t sin(2t).

Example 3.4. Now let’s look at L−1

{
9s

(s+ 10)2 + 4

}
. Now we can’t just ignore the shift

by 10 because the numerator is just 9s, which does not have the shift of 10. We need to
rewrite the numerator in terms of s + 10. That is, we need to find a number A such that
9s = 9(s+ 10) + A. Solving for A yields A = −90, so we must alter our expression to

L−1

{
9(s+ 10)− 90

(s+ 10)2 + 4

}
= L−1

{
9(s+ 10)

(s+ 10)2 + 4

}
− L−1

{
90

(s+ 10)2 + 4

}
.

Now we can ignore the shift by 10 in the function and solve for

L−1

{
9s

s2 + 4

}
− L−1

{
90

s2 + 4

}
= 9 cos(2t)− 90

2
sin(2t).

Finally, we need to adjust our result to compensate for the shift by 10: we do this by
multiplying our result by e−10t. So we will end up getting e−10t(9 cos(2t)− 45 sin(2t)).

Part 4: Partial Fractions and Completing the Square

Given polynomials f(s) and g(s), we can rewrite the rational function
f(s)

g(s)
as a sum

of simpler fractions based on the factors of the denominator g(s). This will be useful in
computing inverse Laplace transforms.
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Example 4.1. Given F (s) =
2s+ 5

s2 − 1
, we can see the denominator factors as (s+ 1)(s− 1).

So we can begin rewriting F as

2s+ 5

s2 − 1
=

A

s+ 1
+

B

s− 1
,

and so
2s+ 5

s2 − 1
=

A(s− 1)

(s+ 1)(s− 1)
+

B(s+ 1)

(s− 1)(s+ 1)
=

A(s− 1) +B(s+ 1)

s2 − 1

and thus
2s+ 5 = A(s− 1) +B(s+ 1).

There are two ways of solving for A and B. One way is to get a system of equations:

2s+ 5 = As− A+Bs+B = (A+B)s+ (−A+B)

and so

2 = A+B

5 = −A+B.

Solving this system of equations gives A = −3
2
and B = 7

2
.

Another way to find A and B is to plug in values for s in the equation
2s + 5 = A(s − 1) + B(s + 1) that cause either the A term or B term to disappear: when
s = 1, we have 7 = 2B and so B = 7

2
, and when s = −1 we get 3 = A(−2) and so A = −3

2
.

So we can rewrite the function as follows:

2s+ 5

s2 − 1
= − 3

2(s+ 1)
+

7

2(s− 1)
.

We can use this to calculate L−1{F (s)}.

L−1

{
2s+ 5

s2 − 1

}
= −3

2
L−1

{
1

s+ 1

}
+

7

2
L−1

{
1

s− 1

}
= −3

2
e−t +

7

2
et.

Note: for this one you can also use

L−1

{
2s+ 5

s2 − 1

}
= 2L−1

{
s

s2 − 1

}
+ 5L−1

{
1

s2 − 1

}
= 2 cosh(t) + 5 sinh(t).

Example 4.2. Given F (s) =
s+ 1

s4 + 5s3 + 6s2
, we can factor the denominator as

s2(s2 + 5s+ 6) = s2(s+ 2)(s+ 3), so we can set up the partial fraction decomposition

s+ 1

s4 + 5s3 + 6s2
=

A

s
+

B

s2
+

C

s+ 2
+

D

s+ 3
.
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We then get

s+ 1 = As(s+ 2)(s+ 3) +B(s+ 2)(s+ 3) + Cs2(s+ 3) +Ds2(s+ 2).

Plugging in s = 0, we get 1 = 6B and so B = 1
6
. Plugging in s = −2, we get −1 = 4C, so

C = −1
4
. Plugging in s = −3, we get −2 = −9D, so D = 2

9
.

To solve for A, we must expand the equation to

s+ 1 = As3 + 5As2 + 6As+
1

6
s2 +

5

6
s+ 1− 1

4
s3 − 3

4
s2 +

2

9
s3 +

4

9
s2.

By grouping up all the s3 terms on both sides, we get

0s3 = As3 − 1

4
s3 +

2

9
s3,

and so 0 = A − 1
4
+ 2

9
, so A = 1

36
. We can also get this by grouping up the s2 and s terms

instead: we would get 0s2 = 5As2 + 1
6
s2 − 3

4
s2 + 4

9
s2 and s = 6As+ 5

6
s, respectively.

So we can finish the partial fraction decomposition as

s+ 1

s4 + 5s3 + 6s2
=

1

36s
+

1

6s2
− 1

4(s+ 2)
+

2

9(s+ 3)
.

We can use this to calculate L−1{F (s)}.

L−1

{
s+ 1

s4 + 5s3 + 6s2

}
=

1

36
L−1

{
1

s

}
+

1

6
L−1

{
1

s2

}
− 1

4
L−1

{
1

s+ 2

}
+

2

9
L−1

{
1

s+ 3

}
=

1

36
+

1

6
t− 1

4
e−2t +

2

9
e−3t.

We can also use the method of completing the square in the case there’s an irreducible
polynomial in the denominator. Recall that the completing the square method rewrites the

polynomial s2 + bs+ c as

(
s+

b

2

)2

+ c− b2

4
.

Example 4.3. Given F (s) =
3s+ 1

s2 − 10s+ 34
, notice that the denominator is irreducible over

the reals. So in order to compute L−1

{
3s+ 1

s2 − 10s+ 34

}
, we will need to complete the square:

s2 − 10s+ 34 = (s− 5)2 + 34− 25 = (s− 5)2 + 9.

Now we have L−1

{
3s+ 1

(s− 5)2 + 9

}
, which will require the First Translation Theorem. First

we need to rewrite the numerator in terms of s − 5: 3s + 1 = 3(s − 5) + 16. Now we can
solve

L−1

{
3(s− 5) + 16

(s− 5)2 + 9

}
= L−1

{
3(s− 5)

(s− 5)2 + 9

}
+ L−1

{
16

(s− 5)2 + 9

}
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by first ignoring the shift by 5 and looking at

L−1

{
3s

s2 + 9

}
+ L−1

{
16

s2 + 9

}
= 3 cos(3t) +

16

3
sin(3t).

The First Translation Theorem says to compensate for the shift by multiplying this result

by e5t, so our answer is e5t
(
3 cos(3t) +

16

3
sin(3t)

)
.

Example 4.4. Given F (s) =
s2 + 1

s4 + 6s3 + 13s2
, the denominator factors as s2(s2 + 6s+ 13),

so we can set up the partial fraction decomposition

s2 + 1

s2(s2 + 6s+ 13)
=

A

s
+

B

s2
+

Cs+D

s2 + 6s+ 13
.

Once we get all the fractions over a common denominator, we will get the equation

s2 + 1 = As(s2 + 6s+ 13) +B(s2 + 6s+ 13) + (Cs+D)s2.

Plugging in s = 0, we get
1 = 13B,

so B =
1

13
. Since s2 + 6s + 13 has no real roots, let’s set up a system of equations by

expanding

s2 + 1 = As3 + 6As2 + 13As+Bs2 + 6Bs+ 13B + Cs3 +Ds2

and grouping by powers of s:

s3 : 0 = A+ C

s2 : 1 = 6A+B +D

s1 : 0 = 13A+ 6B

s0 : 1 = 13B.

Knowing B =
1

13
, the third equation gives us 13A +

6

13
= 0, so A = − 6

169
. Then the

first equation becomes 0 = − 6

169
+ C, so C =

6

169
. Finally, the second equation becomes

1 =
36

169
+

1

13
+D, so D =

120

169
.

So we can finish the partial fraction decomposition as

s2 + 1

s2(s2 + 6s+ 13)
= − 6

169s
+

1

13s2
+

6
169

s+ 120
169

s2 + 6s+ 13
.

To avoid excessive fractions, let’s just write this as

1

169

(
−6

s
+

13

s2
+

6s+ 120

s2 + 6s+ 13

)
.
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The inverse Laplace transforms of the −6

s
and

13

s2
are relatively straightforward: they are

−6 and 13t, respectively. The
6s+ 120

s2 + 6s+ 13
will require completing the square:

s2 + 6s+ 13 = (s+ 3)2 + 13− 9 = (s+ 3)2 + 4.

So we get
6s+ 120

s2 + 6s+ 13
=

6s+ 120

(s+ 3)2 + 4
=

6(s+ 3) + 102

(s+ 3)2 + 4
.

Ignoring the shift by 3, we get

6s+ 102

s2 + 4
=

6s

s2 + 4
+

102

s2 + 4
,

and

L−1

{
6s

s2 + 4
+

102

s2 + 4

}
= 6 cos(2t) +

102

2
sin(2t).

The First Translation Theorem says to adjust for the shift by 3 by multiplying the result by
e−3t, so

L−1

{
6s+ 120

s2 + 6s+ 13

}
= e−3t(6 cos(2t) + 51 sin(2t)).

Putting it all together, we get

L−1

{
s2 + 1

s4 + 6s3 + 13s2

}
=

1

169
(−6 + 13t+ 6e−3t cos(2t) + 51e−3t sin(2t)).

Part 5: The Derivative Theorem and Solving IVPs

Theorem 5.1. Let L{y(t)}(s) = Y (s). Then

L{y(n)(t)}(s) = snY (s)− sn−1y(0)− sn−2y′(0)− sn−3y′′(0)− · · · − sy(n−2)(0)− y(n−1)(0).

In particular,

L{y′(t)}(s) = sY (s)− y(0)

L{y′′(t)}(s) = s2Y (s)− sy(0)− y′(0)

L{y′′′(t)}(s) = s3Y (s)− s2y(0)− sy′(0)− y′′(0)

L{y(4)(t)}(s) = s4Y (s)− s3y(0)− s2y′(s)− sy′′(0)− y′′′(0)

...

and so forth.

This lets us solve IVPs.
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Example 5.1. Consider y′ − y = 1 with the condition y(0) = 0. Applying L to both sides
give us:

L{y′ − y} = L{1}

L{y′} − L{y} =
1

s

sY (s)− y(0)− Y (s) =
1

s
.

Since y(0) = 0, our equation is sY (s)− Y (s) =
1

s
. Then we can solve for Y (s).

Y (s)(s− 1) =
1

s

Y (s) =
1

(s− 1)s
=

1

s− 1
− 1

s
.

Then by taking inverse Laplace transforms, we get

y = L−1

{
1

s− 1

}
− L−1

{
1

s

}
= et − 1.

Example 5.2. Consider y′′+5y′+4y = 0 such that y(0) = 1 and y′(0) = 0. Start by taking
the Laplace transform of both sides:

L{y′′ + 5y′ + 4y} = L{0}
L{y′′}+ 5L{y′}+ 4L{y} = 0

s2Y (s)− sy(0)− y′(0) + 5(sY (s)− y(0)) + 4Y (s) = 0.

Plugging in 1 for y(0) and 0 for y′(0) gives us

s2Y (s)− s+ 5sY (s)− 5 + 4Y (s) = 0.

Solving for Y (s) gives us

Y (s) =
s+ 5

s2 + 5s+ 4
=

s+ 5

(s+ 4)(s+ 1)
= − 1

3(s+ 4)
+

4

3(s+ 1)
.

Then

y = −1

3
L−1

{
1

s+ 4

}
+

4

3
L
{

1

s+ 1

}
= −e−4t

3
+

4e−t

3
.

9
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Example 5.3. Consider y′′+9y = et such that y(0) = 0 and y′(0) = 0. Taking the Laplace
transform on both sides gives us

L{y′′ + 9y} = L{et}

L{y′′}+ 9L{y} =
1

s− 1

s2Y (s)− sy(0)− y′(0) + 9Y (s) =
1

s− 1

s2Y (s) + 9Y (s) =
1

s− 1

Y (s) =
1

(s− 1)(s2 + 9)
=

1

10(s− 1)
− s+ 1

10(s2 + 9)
.

Taking the inverse Laplace transform gives us

y =
1

10
L−1

{
1

s− 1

}
− 1

10
L−1

{
s

s2 + 9

}
− 1

10
L−1

{
1

s2 + 9

}
=

et

10
− cos(3t)

10
− sin(3t)

30
.

Example 5.4. Consider y′′+4y′+5y = 0 with the initial conditions y(0) = 2 and y′(0) = 3.
Applying L on both sides yields

s2Y (s)− sy(0)− y′(0) + 4sY (s)− 4y(0) + 5Y (s) = 0.

Plugging in 2 for y(0) and 3 for y′(0) gives us

s2Y (s)− 2s− 3 + 4sY (s)− 12 + 5Y (s) = 0.

Solving for Y (s) yields

Y (s) =
2s+ 15

s2 + 4s+ 5
=

2s+ 15

(s+ 2)2 + 1
=

2(s+ 2) + 11

(s+ 2)2 + 1
=

2(s+ 2)

(s+ 2)2 + 1
+

11

(s+ 2)2 + 1
.

By ignoring the shift by 2 and taking the inverse Laplace transform, we get

L−1

{
2s

s2 + 1

}
+ L−1

{
11

s2 + 1

}
= 2 cos(t) + 11 sin(t).

Applying the First Translation Theorem, we multiply this result by e−2t to get

y = e−2t(2 cos(t) + 11 sin(t))

Part 6: Step Functions

Definition 6.1. The unit step function is

U(t) =

{
0 if t < 0

1 if t ≥ 0
.

U is “off”/“asleep” when t is negative and “turns on”/“wakes up” as soon as t hits 0. Usually
we will work with the translated step function U(t− a), which wakes up at t = a.
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The step function provides an alternate way to express piecewise functions. For instance

f(t) =

{
g(t) if 0 ≤ t < a

h(t) if t ≥ a

is
g(t)(1− U(t− a)) + h(t)U(t− a).

Let’s examine why: when 0 ≤ t < a, U(t− a) = 0, so

g(t)(1− U(t− a)) + h(t)U(t− a) = g(t)(1− 0) + h(t)(0) = g(t),

which matches f(t). And when t ≥ a, U(t− a) = 1, so

g(t)(1− U(t− a)) + h(t)U(t− a) = g(t)(1− 1) + h(t)(1) = h(t),

which also matches f(t).
Similarly,

f(t) =


0 if 0 ≤ t < a

g(t) if a ≤ t < b

0 if b ≤ t

is
g(t)(U(t− a)− U(t− b)).

Let’s examine why: when 0 ≤ t < a, U(t− a) and U(t− b) are both 0, so

g(t)(U(t− a)− U(t− b)) = g(t)(0− 0) = 0.

When a ≤ t < b, U(t− a) = 1 and U(t− b) = 0, so

g(t)(U(t− a)− U(t− b)) = g(t)(1− 0) = g(t).

When t ≥ b, U(t− a) and U(t− b) are both 1, so

g(t)(U(t− a)− U(t− b)) = g(t)(1− 1) = 0.

Part 7: The Second Translation Theorem

Theorem 7.1. If F (s) = L{f(t)} and a > 0, then

L{f(t− a)U(t− a)} = e−asF (s).

To compute L{U(t− a)}, take f to equal 1 and so F (s) =
1

s
. Then

L{U(t− a)} =
e−as

s
.

11
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Corollary 7.2. An alternate form of the Second Translation Theorem:

L{g(t)U(t− a)} = e−asL{g(t+ a)}.

Corollary 7.3. Since the Second Translation Theorem tells us L{f(t − a)U(t − a)} =
e−asF (s), applying L−1 on both sides of the equation gives us

L−1{e−asF (s)} = f(t− a)U(t− a).

Example 7.4. Find the Laplace transform of f(t) = 2(U(t−2)−U(t−4))−U(t−4). First
let’s simplify f(t) to 2U(t− 2)− 3U(t− 4). Then by the Theorem and linearity:

L{f(t)} = 2L{U(t− 2)} − 3L{U(t− 4)} =
2e−2s − 3e−4s

s
.

Example 7.5. Consider L−1

{
e−s

s+ 3

}
. We can calculate this using the Inverse Second

Translation Theorem (Corollary 7.3). First, we can ignore the e−s, which gives us

L−1

{
1

s+ 3

}
= e−3t.

Then the Inverse Second Translation Theorem says to adjust for the e−s by shifting our
answer by 1 and multiplying by U(t− 1). This gives us e−3(t−1)U(t− 1) as the answer.

Example 7.6. Consider L−1

{
se−

π
2
s

s2 + 4

}
. First let’s ignore the e−

π
2 and calculate

L−1

{
s

s2 + 4

}
= cos(2t).

Then the Inverse Second Translation Theorem says to adjust for the e−
π
2 by shifting our

result by π
2
and multiplying by U(t− π

2
). This gives us cos(2(t− π

2
))U(t− π

2
) as the answer.

Example 7.7. Solve y′ + 2y = f(t) such that y(0) = 0, where

f(t) =

{
t if 0 ≤ t < 1

0 if 1 ≤ t
.

Begin by writing f(t) = t(1−U(t− 1)), or t− tU(t− 1). Then by the alternate form of the
Second Translation Theorem (Corollary 7.2),

L{t− tU(t− 1)} =
1

s2
− e−sL{t+ 1} =

1

s2
− e−s

(
1

s2
+

1

s

)
.

So by applying L to both sides of the DE, we get

sY (s)− y(0) + 2Y (s) =
1

s2
− e−s

(
1

s2
+

1

s

)
,

12
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and by plugging in 0 for y(0), we get

(s+ 2)Y (s) =
1

s2
− e−s

(
1

s2
+

1

s

)
.

Solving for Y (s) gives us

Y (s) =
1

s2(s+ 2)
− e−s

(
1

s2(s+ 2)
+

1

s(s+ 2)

)
,

which requires a partial fraction decomposition for
1

s2(s+ 2)
and

1

s(s+ 2)
.

For
1

s2(s+ 2)
:

1

s2(s+ 2)
=

A

s
+

B

s2
+

C

s+ 2
,

and so
1 = As(s+ 2) +B(s+ 2) + Cs2.

Plugging in s = 0 gives
1 = 2B,

so B =
1

2
. Plugging in s = −2 gives

1 = 4C,

so C =
1

4
. Now

1 = As2 + 2As+
1

2
s+ 1 +

1

4
s2,

and the s2-terms give us the equation A+
1

4
= 0, so A = −1

4
. Thus

1

s2(s+ 2)
= − 1

4s
+

1

2s2
+

1

4(s+ 2)
.

Now for
1

s(s+ 2)
:

1

s(s+ 2)
=

A

s
+

B

s+ 2
,

and so
1 = A(s+ 2) +Bs.

Plugging in s = 0 gives us A =
1

2
. Plugging in s = −2 gives us B = −1

2
. Thus

1

s(s+ 2)
=

1

2s
− 1

2(s+ 2)
.

13
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Putting it all together:

Y (s) = − 1

4s
+

1

2s2
+

1

4(s+ 2)
+ e−s

(
− 1

4s
+

1

2s2
+

1

4(s+ 2)
+

1

2s
− 1

2(s+ 2)

)
,

which simplifies to

Y (s) = − 1

4s
+

1

2s2
+

1

4(s+ 2)
+ e−s

(
1

4s
+

1

2s
− 1

4(s+ 2)

)
.

First let’s take the inverse Laplace transform of the first bit: − 1

4s
+

1

2s2
+

1

4(s+ 2)
. Following

The Chart, the inverse transform is −1

4
+

t

2
+

e−2t

4
.

For the second bit, we will need the Inverse Second Translation Theorem (Corollary 7.3).
Let’s start by ignoring the e−s and focus on the inverse Laplace transform of
1

4s
+

1

2s
− 1

4(s+ 2)
. Following The Chart, the inverse transform is

1

4
+

t

2
− e−2t

4
. The Inverse

Second Translation Theorem says next we have to compensate for the e−s by shifting our
result by 1 and multiplying by U(t− 1). So we get(

1

4
+

t− 1

2
− e−2(t−1)

4

)
U(t− 1).

Putting everything together now, we get the answer

y(t) = −1

4
+

t

2
+

e−2t

4
+

(
1

4
+

t− 1

2
− e−2(t−1)

4

)
U(t− 1).

Part 8: Deflection of a Beam
Consider a beam of length L. Think of the deflection of a beam y as a function of x. If

the beam carries a load of w(x) per unit length (so

∫ L

0

w(x)dx = total weight), then we

have the following DE for y:

EI
d4y

dx4
= w(x),

where E is elasticity and I is moment of inertia.

Example 8.1. Suppose we have a 10 ft beam clamped at both ends (meaning y(0) = y′(0) =
y(10) = y′(10) = 0), and that 10 lbs of weight are distributed uniformly across a 2 ft span
across the center of the beam. So all of the eight is concentrated in the interval [4, 6]. Since
the 10 lbs are distributed uniformly across 2 ft, that is 5 pounds per foot. The weight density
function is

w(x) =


0 if 0 ≤ x < 4

5 if 4 ≤ x ≤ 6

0 if 6 < x

.

14
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We will find the deflection y of the beam, with E and I left unspecified. We can set up
the Boundary Value Problem

EIy(4) = 5(U(x− 4)− U(x− 6)),

with the boundary conditions y(0) = y′(0) = y(10) = y′(10) = 0. Applying L on both sides
yields

EI(s4Y (s)− s3y(0)− s2y′(0)− sy′′(0)− y′′′(0)) = 5

(
e−4s

s
− e−6s

s

)
.

The boundary conditions tell us y(0) = 0 and y′(0) = 0, but tell us nothing about y′′(0) and
y′′′(0), so we will call those c1 and c2 for now:

EI(s4Y (s)− sc1 − c2) = 5

(
e−4s

s
− e−6s

s

)
.

Solving for Y (s) gives us

Y (s) =
5

EI

(
e−4s

s5
− e−6s

s5

)
+

c1
s3

+
c2
s4
.

The Inverse Second Translation Theorem (Corollary 7.3) tells us how to compute L−1

{
e−4s

s5

}
and L−1

{
e−6s

s5

}
. First ignore the exponential functions, so all we have is L−1

{
1

s5

}
. Then

we find the inverse Laplace transform, which is
x4

4!
=

x4

24
. Then we adjust for that e−4s by

shifting this result by 4 and multiplying by U(x− 4); and we adjust for that e−6s by shifting

the
x4

24
by 6 and multiplying by U(x− 6). So we get

L−1

{
e−4s

s

}
=

(x− 4)4

24
U(x− 4)

L−1

{
e−6s

s

}
=

(x− 6)4

24
U(x− 6)

And remember that The Chart says the L−1
{c1
s3

}
=

c1x
2

2
and L−1

{c2
s4

}
=

c2x
3

6
. Putting

it all together, we get

y(x) =
5

EI

(
(x− 4)4

24
U(x− 4)− (x− 6)4

24
U(x− 6)

)
+

c1x
2

2
+

c2x
3

6
.

Now we need to solve for c1 and c2 by using the boundary conditions y(10) = 0 and y′(10) = 0.
Thankfully, the step functions do not create trouble for us when we are solving: since are
using x = 10, we can plug in 10 for x in U(x − 4) and U(x − 6). Since U(10 − 4) = 1

15
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and U(10 − 6) = 1, we can take the step functions to just be 1 (this also means that
d

dx
U(x− 4) =

d

dx
1 = 0, and

d

dx
U(x− 6) =

d

dx
1 = 0).

So y for x > 6 is

y(x) =
5

EI

(
(x− 4)4

24
− (x− 6)4

24

)
+

c1x
2

2
+

c2x
3

6

and y′ for x > 6 is

y′(x) =
5

EI

(
(4(x− 4)3

24
− 4(x− 6)3

24

)
+ c1x+

c2x
2

2
.

Plugging in 10 for x in y(x), we get

0 =
5

EI

(
64

24
− 44

24

)
+ 50c1 +

1000c2
6

.

Plugging in 10 for x in y′(x), we get

0 =
5

EI

(
62 − 43

6

)
+ 10c1 + 50c2.

Simplifying everything, we get

0 =
650

3EI
+ 50c1 +

500c2
3

and

0 =
380

3EI
+ 10c2 + 50c3,

which results in c1 =
37

3EI
and c2 =

5

EI
. This results in

y(x) =
5

24EI
((x− 4)4U(x− 4)− (x− 6)4U(x− 6)) +

37

6EI
x2 − 5

6EI
x3.

Part 9: Derivatives of Laplace Transforms

Theorem 9.1. Given F (s) = L{f(t)}, then for n = 1, 2, 3, . . . ,

L{tnf(t)} = (−1)n
dn

dsn
F (s).

Example 9.2.

L{t sin(2t)} = − d

ds
L{sin(2t)} = − d

ds

2

s2 + 4
=

4s

(s2 + 4)2
.

Example 9.3.

L{t2et} =
d2

ds2
L{et} =

d2

ds2
1

s− 1
=

2

(s− 3)3
.
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Example 9.4.

L{tet sin(t)} = − d

ds
L{et sin(t)}.

Remember the First Translation Theorem (Theorem 3.1) says that L{eatf(t)} = F (s − a).
So

− d

ds
L{et sin(t)} = − d

ds

1

(s− 1)2 + 1
=

2(s− 1)

((s− 1)2 + 1)2
.

Part 10: Convolution

Definition 10.1. Given f and g on [0,∞), the convolution of f and g is defined to be

f(t) ∗ g(t) =
∫ t

0

f(τ)g(t− τ)dτ.

Note that f(t) ∗ g(t) = g(t) ∗ f(t), you can use a u-substitution u = t− τ to get from one to
the other.

Theorem 10.2. The Convolution Theorem: If f and g have are piecewise continuous on
[0,∞) and of exponential order, then

L{f(t) ∗ g(t)} = L{f(t)}L{g(t)}.

Corollary 10.3. The inverse version of the Convolution Theorem is that if F (s) and G(s)
are Laplace transforms of f and g, respectively, then

L−1{F (s)G(s)} = f(t) ∗ g(t).

Example 10.4. What is t ∗ et?∫ t

0

τet−τdτ =

∫ t

0

τeteτdτ = et
∫ t

0

τe−τ .

Using integration by parts:

u = τ dv = e−τdτ

du = dτ v = −e−τ

we get

et

(
−τe−τ

∣∣∣∣t
0

−
∫ t

0

−e−τdτ

)
= et

(
−te−t − e−τ

∣∣∣∣t
0

)
= et(−te−t − e−t + 1) = −t− 1 + et.

Example 10.5. We can use the Convolution Theorem to compute

L
{∫ t

0

sin(τ) cos(t− τ)dτ

}
.

Since this is just L{sin(t) ∗ cos(t)}, Theorem 10.2 tells us

L
{∫ t

0

sin(τ) cos(t− τ)dτ

}
= L{sin(t)}L{cos(t)} =

1

s2 + 1
· s

s2 + 1
=

s

(s2 + 1)2
.

17
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Example 10.6. Find the Laplace transform L
{∫ t

0

cos(τ)dτ

}
. Notice that

∫ t

0

cos(τ)dτ is

the convolution cos(t) ∗ 1. Thus

L
{∫ t

0

cos(τ)dτ

}
= L{cos(t) ∗ 1} = L{cos(t)} · L{1} =

s

s2 + 1
· 1
s
=

1

s2 + 1
.

Example 10.7. Find L−1

{
1

s(s+ 1)

}
using convolution.

L−1

{
1

s(s+ 1)

}
= L−1

{
1

s

}
∗ L−1

{
1

s+ 1

}
= 1 ∗ e−t.

Using the definition of convolution, this is∫ t

0

e−τdτ = −e−τ

∣∣∣∣t
0

= −e−t + 1.

Notice that convolution gives an alternative to using partial fraction decomposition!

Part 11: Periodic Functions

Definition 11.1. A function f(t) is periodic with period P if f(t−P ) = f(t) for all t. For
example, the trig functions sin(t) and cos(t) are periodic with period 2π.

Theorem 11.2. If f(t) is a periodic, piecewise continuous function on [0,∞) of exponential
order, with period P , then

L{f(t)}(s) = 1

1− e−sP

∫ P

0

e−stf(t)dt.

Example 11.3. Since cos(t) is periodic with period 2π, L{cos(t)} =
1

1− e−2πs

∫ 2π

0

e−st cos(t)dt.

Part 12: The Dirac Delta

Definition 12.1. The unit impulse function δa is defined to be

δa(t) =


0 if 0 ≤ t ≤ −a
1
2a

if − a ≤ t < a

0 if t ≥ a

.

Using step functions, we can rewrite this as

δa(t) =
1

2a
(U(t+ a)− U(t− a)).

18
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Notice that ∫ ∞

−∞
δa(t)dt =

∫ −a

−∞
0dt+

∫ a

−a

1

2a
dt+

∫ ∞

a

0dt = 1.

We can also shift the unit impulse function to the right by t0: this gives us the function
δa(t− t0).

Definition 12.2. The Dirac Delta “function” is

δ(t− t0) = lim
a→0

δa(t− t0).

Some properties of δ(t− t0) are:

1. δ(t− t0) =

{
∞ if t = t0

0 if t ̸= t0

2.

∫ ∞

−∞
δ(t− t0)dt = lim

a→0

∫ ∞

−∞
δa(t− t0)dt = 1.

**Note that the Dirac Delta function is not actually a function.

Theorem 12.3. We can define the Laplace transform as lim
a→0

L{δa(t− t0)}(s). Then

L{δ(t− t0)} = e−st0 .

In particular, if t0 = 0,
L{δ(t)} = 1.

Example 12.4. Suppose we have a spring and mass system with mass m = 1, spring
constant k = 1, and with an external force of 4δ(t− 2π). Solve the IVP

y′′ + y = 4δ(t− 2π)

such that y(0) = 0, y′(0) = 0. Applying L to both sides gives

L{y′′ + y} = 4e−2πs.

s2Y (s)− sy(0)− y′(0) + Y (s) = 4e−2πs.

Using 0 for y(0) and 0 for y′(0), we get

s2Y (s) + Y (s) = 4e−2πs,

and solving for Y (s) gives

Y (s) =
4e−2πs

s2 + 1
.

We can take the inverse Laplace transform by using the Inverse Second Translation Theorem

(Corollary 7.3). First ignore the e−2πs and focus on L−1

{
4

s2 + 1

}
, which is 4 sin(t). Then

we adjust for the e−2πs by shifting this result by 2π and multiplying by U(t− 2π). Thus we
get the answer

y = L−1

{
4e−2πs

s2 + 1

}
= 4 sin(t− 2π)U(t− 2π).
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Example 12.5. Solve the IVP y′′ + y = 4δ(t− 2π) such that y(0) = 1, y′(0) = 0. Applying
L to both sides gives

L{y′′ + y} = 4e−2πs.

s2Y (s)− sy(0)− y′(0) + Y (s) = 4e−2πs.

Using 1 for y(0) and 0 for y′(0), we get

Y (s)(s2 + 1)− s = 4e−2πs.

Solving for Y (s) gives

Y (s) =
4e−2πs

s2 + 1
+

s

s2 + 1
.

We already calculated L−1

{
4e−2πs

s2 + 1

}
= 4 sin(t−2π)U(t−2π) in the previous example. And

L−1

{
s

s2 + 1

}
= cos(t), from The Chart. Thus

y = 4 sin(t− 2π)U(t− 2π) + cos(t).
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