Part 0: The Laplace Transform

Definition 0.1. Given a function $f(t)$ defined in the interval $[0, \infty)$, the Laplace transform of f is

$$
\mathcal{L}\{f(t)\}(s)=\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t .
$$

Example 0.1. Given $f(t)=1$,

$$
\mathcal{L}\{f(t)\}(s)=\int_{0}^{\infty} 1 e^{-s t} \mathrm{~d} t=-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty}=\frac{1}{s} .
$$

Example 0.2. Given $f(t)=t$,

$$
\mathcal{L}\{f(t)\}(s)=\int_{0}^{\infty} t e^{-s t} \mathrm{~d} t .
$$

Choosing

$$
\begin{array}{rl}
u=t & \mathrm{~d} v=e^{-s t} \mathrm{~d} t \\
\mathrm{~d} u=\mathrm{d} t & v=-\frac{1}{s} e^{-s t}
\end{array}
$$

and using integration by parts $\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u$, we get

$$
-\left.\frac{t}{s} e^{-s t}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{1}{s} e^{-s t} \mathrm{~d} t=[0-0]-\left.\frac{1}{s^{2}} e^{-s t}\right|_{0} ^{\infty}=\frac{1}{s^{2}}
$$

Example 0.3. Given $f(t)=e^{a t}$,

$$
\mathcal{L}\{f(t)\}(s)=\int_{0}^{\infty} e^{a t} e^{-s t} \mathrm{~d} t=\int_{0}^{\infty} e^{(a-s) t} \mathrm{~d} t=\left.\frac{1}{a-s} e^{(a-s) t}\right|_{0} ^{\infty}
$$

Note that $\lim _{t \rightarrow \infty} e^{(a-s) t}=\left\{\begin{array}{ll}\infty & \text { if } a>s \\ 0 & \text { if } a<s\end{array}\right.$, so the Laplace transform can only be defined on the domain $a<s$, or (a, ∞).

Continuing in the case $a<s$,

$$
\left.\frac{1}{a-s} e^{(a-s) t}\right|_{0} ^{\infty}=0-\frac{1}{a-s}=\frac{1}{s-a}
$$

Part 1: The Chart

Here is a table of common Laplace transforms:

$f(t)$	$\mathcal{L}\{f(t)\}(s)$
1	$\frac{1}{s}$
t^{n}	$\frac{n!}{s^{n+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\cos (k t)$	$\frac{s}{s^{2}+k^{2}}$
$\sin (k t)$	$\frac{k}{s^{2}+k^{2}}$
$\cosh (k t)$	$\frac{s}{s^{2}-k^{2}}$
$\sinh (k t)$	$\frac{k}{s^{2}-k^{2}}$

Note that $\cosh (t)=\frac{e^{t}+e^{-t}}{2}$ and $\sinh (t)=\frac{e^{t}-e^{-t}}{2}$.
Part 2: Linearity and Inverse Laplace Transforms
Also note that the Laplace transform acts linearly on its inputs: meaning that if we have functions $f(t)$ and $g(t)$ and constants a and b, then

$$
\mathcal{L}\{a f(t)+b g(t)\}=a \mathcal{L}\{f(t)\}+b \mathcal{L}\{g(t)\} .
$$

Example 2.1.

$$
\begin{aligned}
\mathcal{L}\left\{3+5 t^{2}+t^{7}-8 \cos (10 t)\right\}=3 \mathcal{L}\{1\}=5 \mathcal{L}\left\{t^{2}\right\} & +\mathcal{L}\left\{t^{7}\right\}-8 \mathcal{L}\{\cos (10 t)\} \\
= & \frac{3}{s}+\frac{10}{s^{3}}+\frac{7!}{s^{8}}-8 \frac{s}{s^{2}+100} .
\end{aligned}
$$

Example 2.2.

$$
\mathcal{L}\left\{11-6 \sin (\sqrt{3} t)+15 e^{-4 t}+15 t^{3}\right\}=\frac{11}{s}-\frac{6 \sqrt{3}}{s^{2}+3}+\frac{15}{s+4}+\frac{90}{s^{4}} .
$$

The inverse Laplace transform also acts linearly: so given functions $F(s)$ and $G(s)$ and constants a and b,

$$
\mathcal{L}^{-1}\{a F(s)+b G(s)\}=a \mathcal{L}^{-1}\{F(s)\}+b \mathcal{L}^{-1}\{G(s)\} .
$$

To calculate inverse Laplace transforms, we will largely rely on The Chart in addition to rules like linearity instead of having an explicit formula.

$F(s)$	$\mathcal{L}^{-1}\{F(s)\}(t)$
$\frac{1}{s}$	1
$\frac{1}{s^{n}}$	$\frac{t^{n-1}}{(n-1)!}$
$\frac{1}{s-a}$	$e^{a t}$
$\frac{s}{s^{2}+k^{2}}$	$\cos (k t)$
$\frac{1}{s^{2}+k^{2}}$	$\frac{\sin (k t)}{k}$
$\frac{s}{s^{2}-k^{2}}$	$\cosh (k t)$
$\frac{1}{s^{2}-k^{2}}$	$\frac{\sinh (k t)}{k}$

Example 2.3.

$$
\begin{array}{r}
\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+9}-\frac{10 s}{s^{2}+11}+\frac{8}{s}-\frac{15}{s^{5}}\right\} \\
=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+9}\right\}-10 \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+11}\right\}+8 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-15 \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\} \\
=\frac{\sin (3 t)}{3}-10 \cos (\sqrt{11} t)+8-15 t
\end{array}
$$

Example 2.4.

$$
\begin{array}{r}
\mathcal{L}^{-1}\left\{\frac{5}{s^{5}}+\frac{1}{6 s^{6}}+\frac{7 s}{4 s^{2}+100}+\frac{15}{2 s-100}\right\} \\
=5 \mathcal{L}^{-1}\left\{\frac{1}{s^{5}}\right\}+\frac{1}{6} \mathcal{L}^{-1}\left\{\frac{1}{s^{6}}\right\}+\frac{7}{4} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+25}\right\}+\frac{15}{2} \mathcal{L}^{-1}\left\{\frac{1}{s-50}\right\} \\
=5 \frac{t^{4}}{4!}+\frac{1}{6} \cdot \frac{t^{5}}{5!}+\frac{7}{4} \cos (5 t)+\frac{15}{2} e^{50 t}
\end{array}
$$

Part 3: The First Translation Theorem

Theorem 3.1. Given $\mathcal{L}\{f(t)\}(s)=F(s)$ and a is a contstant, then

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

To put this another way,

$$
\mathcal{L}^{-1}\{F(s-a)\}=e^{a t} f(t)
$$

Example 3.1. If we take $\mathcal{L}\left\{e^{5 t} t^{3}\right\}$ and ignore the $e^{5 t}$, we have $\mathcal{L}\left\{t^{3}\right\}$, which is $\frac{3!}{s^{4}}$. Now using that $e^{5 t}$ to shift the result by 5 , we get $\frac{3!}{(s-5)^{4}}$ as our answer.

Example 3.2. If we look at $\mathcal{L}\left\{e^{-2 t} \cos (7 t)\right\}$ and ignore the $e^{-2 t}$, we are left with $\mathcal{L}\{\cos (7 t)\}$, which is $\frac{s}{s^{2}+49}$. Now using the $e^{-2 t}$ to shift the result by -2 , we get $\frac{s+2}{(s+2)^{2}+49}$ as our answer.

Example 3.3. If we look at $\mathcal{L}^{-1}\left\{\frac{9}{(s+10)^{2}+4}\right\}$, we can first ignore the shift by 10 and look at $\mathcal{L}^{-1}\left\{\frac{9}{s^{2}+4}\right\}$. From the chart, we can see that this is $\frac{9}{2} \sin (2 t)$. Now to compensate for the shift by 10 , we need to multiply our result by $e^{-10 t}$ to get $\frac{9}{2} e^{-10 t} \sin (2 t)$.

Example 3.4. Now let's look at $\mathcal{L}^{-1}\left\{\frac{9 s}{(s+10)^{2}+4}\right\}$. Now we can't just ignore the shift by 10 because the numerator is just $9 s$, which does not have the shift of 10 . We need to rewrite the numerator in terms of $s+10$. That is, we need to find a number A such that $9 s=9(s+10)+A$. Solving for A yields $A=-90$, so we must alter our expression to

$$
\mathcal{L}^{-1}\left\{\frac{9(s+10)-90}{(s+10)^{2}+4}\right\}=\mathcal{L}^{-1}\left\{\frac{9(s+10)}{(s+10)^{2}+4}\right\}-\mathcal{L}^{-1}\left\{\frac{90}{(s+10)^{2}+4}\right\}
$$

Now we can ignore the shift by 10 in the function and solve for

$$
\mathcal{L}^{-1}\left\{\frac{9 s}{s^{2}+4}\right\}-\mathcal{L}^{-1}\left\{\frac{90}{s^{2}+4}\right\}=9 \cos (2 t)-\frac{90}{2} \sin (2 t) .
$$

Finally, we need to adjust our result to compensate for the shift by 10: we do this by multiplying our result by $e^{-10 t}$. So we will end up getting $e^{-10 t}(9 \cos (2 t)-45 \sin (2 t))$.

Part 4: Partial Fractions and Completing the Square

Given polynomials $f(s)$ and $g(s)$, we can rewrite the rational function $\frac{f(s)}{g(s)}$ as a sum of simpler fractions based on the factors of the denominator $g(s)$. This will be useful in computing inverse Laplace transforms.

Example 4.1. Given $F(s)=\frac{2 s+5}{s^{2}-1}$, we can see the denominator factors as $(s+1)(s-1)$. So we can begin rewriting F as

$$
\frac{2 s+5}{s^{2}-1}=\frac{A}{s+1}+\frac{B}{s-1}
$$

and so

$$
\frac{2 s+5}{s^{2}-1}=\frac{A(s-1)}{(s+1)(s-1)}+\frac{B(s+1)}{(s-1)(s+1)}=\frac{A(s-1)+B(s+1)}{s^{2}-1}
$$

and thus

$$
2 s+5=A(s-1)+B(s+1)
$$

There are two ways of solving for A and B. One way is to get a system of equations:

$$
2 s+5=A s-A+B s+B=(A+B) s+(-A+B)
$$

and so

$$
\begin{aligned}
& 2=A+B \\
& 5=-A+B .
\end{aligned}
$$

Solving this system of equations gives $A=-\frac{3}{2}$ and $B=\frac{7}{2}$.
Another way to find A and B is to plug in values for s in the equation
$2 s+5=A(s-1)+B(s+1)$ that cause either the A term or B term to disappear: when $s=1$, we have $7=2 B$ and so $B=\frac{7}{2}$, and when $s=-1$ we get $3=A(-2)$ and so $A=-\frac{3}{2}$.

So we can rewrite the function as follows:

$$
\frac{2 s+5}{s^{2}-1}=-\frac{3}{2(s+1)}+\frac{7}{2(s-1)}
$$

We can use this to calculate $\mathcal{L}^{-1}\{F(s)\}$.

$$
\mathcal{L}^{-1}\left\{\frac{2 s+5}{s^{2}-1}\right\}=-\frac{3}{2} \mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\}+\frac{7}{2} \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}=-\frac{3}{2} e^{-t}+\frac{7}{2} e^{t} .
$$

Note: for this one you can also use

$$
\mathcal{L}^{-1}\left\{\frac{2 s+5}{s^{2}-1}\right\}=2 \mathcal{L}^{-1}\left\{\frac{s}{s^{2}-1}\right\}+5 \mathcal{L}^{-1}\left\{\frac{1}{s^{2}-1}\right\}=2 \cosh (t)+5 \sinh (t)
$$

Example 4.2. Given $F(s)=\frac{s+1}{s^{4}+5 s^{3}+6 s^{2}}$, we can factor the denominator as $s^{2}\left(s^{2}+5 s+6\right)=s^{2}(s+2)(s+3)$, so we can set up the partial fraction decomposition

$$
\frac{s+1}{s^{4}+5 s^{3}+6 s^{2}}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+2}+\frac{D}{s+3} .
$$

We then get

$$
s+1=A s(s+2)(s+3)+B(s+2)(s+3)+C s^{2}(s+3)+D s^{2}(s+2)
$$

Plugging in $s=0$, we get $1=6 B$ and so $B=\frac{1}{6}$. Plugging in $s=-2$, we get $-1=4 C$, so $C=-\frac{1}{4}$. Plugging in $s=-3$, we get $-2=-9 D$, so $D=\frac{2}{9}$.

To solve for A, we must expand the equation to

$$
s+1=A s^{3}+5 A s^{2}+6 A s+\frac{1}{6} s^{2}+\frac{5}{6} s+1-\frac{1}{4} s^{3}-\frac{3}{4} s^{2}+\frac{2}{9} s^{3}+\frac{4}{9} s^{2} .
$$

By grouping up all the s^{3} terms on both sides, we get

$$
0 s^{3}=A s^{3}-\frac{1}{4} s^{3}+\frac{2}{9} s^{3},
$$

and so $0=A-\frac{1}{4}+\frac{2}{9}$, so $A=\frac{1}{36}$. We can also get this by grouping up the s^{2} and s terms instead: we would get $0 s^{2}=5 A s^{2}+\frac{1}{6} s^{2}-\frac{3}{4} s^{2}+\frac{4}{9} s^{2}$ and $s=6 A s+\frac{5}{6} s$, respectively.

So we can finish the partial fraction decomposition as

$$
\frac{s+1}{s^{4}+5 s^{3}+6 s^{2}}=\frac{1}{36 s}+\frac{1}{6 s^{2}}-\frac{1}{4(s+2)}+\frac{2}{9(s+3)} .
$$

We can use this to calculate $\mathcal{L}^{-1}\{F(s)\}$.

$$
\begin{array}{r}
\mathcal{L}^{-1}\left\{\frac{s+1}{s^{4}+5 s^{3}+6 s^{2}}\right\}=\frac{1}{36} \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}+\frac{1}{6} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}-\frac{1}{4} \mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}+\frac{2}{9} \mathcal{L}^{-1}\left\{\frac{1}{s+3}\right\} \\
=\frac{1}{36}+\frac{1}{6} t-\frac{1}{4} e^{-2 t}+\frac{2}{9} e^{-3 t}
\end{array}
$$

We can also use the method of completing the square in the case there's an irreducible polynomial in the denominator. Recall that the completing the square method rewrites the polynomial $s^{2}+b s+c$ as $\left(s+\frac{b}{2}\right)^{2}+c-\frac{b^{2}}{4}$.
Example 4.3. Given $F(s)=\frac{3 s+1}{s^{2}-10 s+34}$, notice that the denominator is irreducible over the reals. So in order to compute $\mathcal{L}^{-1}\left\{\frac{3 s+1}{s^{2}-10 s+34}\right\}$, we will need to complete the square:

$$
s^{2}-10 s+34=(s-5)^{2}+34-25=(s-5)^{2}+9
$$

Now we have $\mathcal{L}^{-1}\left\{\frac{3 s+1}{(s-5)^{2}+9}\right\}$, which will require the First Translation Theorem. First we need to rewrite the numerator in terms of $s-5: 3 s+1=3(s-5)+16$. Now we can solve

$$
\mathcal{L}^{-1}\left\{\frac{3(s-5)+16}{(s-5)^{2}+9}\right\}=\mathcal{L}^{-1}\left\{\frac{3(s-5)}{(s-5)^{2}+9}\right\}+\mathcal{L}^{-1}\left\{\frac{16}{(s-5)^{2}+9}\right\}
$$

by first ignoring the shift by 5 and looking at

$$
\mathcal{L}^{-1}\left\{\frac{3 s}{s^{2}+9}\right\}+\mathcal{L}^{-1}\left\{\frac{16}{s^{2}+9}\right\}=3 \cos (3 t)+\frac{16}{3} \sin (3 t) .
$$

The First Translation Theorem says to compensate for the shift by multiplying this result by $e^{5 t}$, so our answer is $e^{5 t}\left(3 \cos (3 t)+\frac{16}{3} \sin (3 t)\right)$.
Example 4.4. Given $F(s)=\frac{s^{2}+1}{s^{4}+6 s^{3}+13 s^{2}}$, the denominator factors as $s^{2}\left(s^{2}+6 s+13\right)$, so we can set up the partial fraction decomposition

$$
\frac{s^{2}+1}{s^{2}\left(s^{2}+6 s+13\right)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C s+D}{s^{2}+6 s+13} .
$$

Once we get all the fractions over a common denominator, we will get the equation

$$
s^{2}+1=A s\left(s^{2}+6 s+13\right)+B\left(s^{2}+6 s+13\right)+(C s+D) s^{2} .
$$

Plugging in $s=0$, we get

$$
1=13 B,
$$

so $B=\frac{1}{13}$. Since $s^{2}+6 s+13$ has no real roots, let's set up a system of equations by expanding

$$
s^{2}+1=A s^{3}+6 A s^{2}+13 A s+B s^{2}+6 B s+13 B+C s^{3}+D s^{2}
$$

and grouping by powers of s :

$$
\begin{aligned}
& s^{3}: 0=A+C \\
& s^{2}: 1=6 A+B+D \\
& s^{1}: 0=13 A+6 B \\
& s^{0}: 1=13 B .
\end{aligned}
$$

Knowing $B=\frac{1}{13}$, the third equation gives us $13 A+\frac{6}{13}=0$, so $A=-\frac{6}{169}$. Then the first equation becomes $0=-\frac{6}{169}+C$, so $C=\frac{6}{169}$. Finally, the second equation becomes $1=\frac{36}{169}+\frac{1}{13}+D$, so $D=\frac{120}{169}$.

So we can finish the partial fraction decomposition as

$$
\frac{s^{2}+1}{s^{2}\left(s^{2}+6 s+13\right)}=-\frac{6}{169 s}+\frac{1}{13 s^{2}}+\frac{\frac{6}{169} s+\frac{120}{169}}{s^{2}+6 s+13} .
$$

To avoid excessive fractions, let's just write this as

$$
\frac{1}{169}\left(-\frac{6}{s}+\frac{13}{s^{2}}+\frac{6 s+120}{s^{2}+6 s+13}\right)
$$

The inverse Laplace transforms of the $-\frac{6}{s}$ and $\frac{13}{s^{2}}$ are relatively straightforward: they are -6 and $13 t$, respectively. The $\frac{6 s+120^{s}}{s^{2}+6 s+13}$ will require completing the square:

$$
s^{2}+6 s+13=(s+3)^{2}+13-9=(s+3)^{2}+4
$$

So we get

$$
\frac{6 s+120}{s^{2}+6 s+13}=\frac{6 s+120}{(s+3)^{2}+4}=\frac{6(s+3)+102}{(s+3)^{2}+4} .
$$

Ignoring the shift by 3 , we get

$$
\frac{6 s+102}{s^{2}+4}=\frac{6 s}{s^{2}+4}+\frac{102}{s^{2}+4}
$$

and

$$
\mathcal{L}^{-1}\left\{\frac{6 s}{s^{2}+4}+\frac{102}{s^{2}+4}\right\}=6 \cos (2 t)+\frac{102}{2} \sin (2 t)
$$

The First Translation Theorem says to adjust for the shift by 3 by multiplying the result by $e^{-3 t}$, so

$$
\mathcal{L}^{-1}\left\{\frac{6 s+120}{s^{2}+6 s+13}\right\}=e^{-3 t}(6 \cos (2 t)+51 \sin (2 t))
$$

Putting it all together, we get

$$
\mathcal{L}^{-1}\left\{\frac{s^{2}+1}{s^{4}+6 s^{3}+13 s^{2}}\right\}=\frac{1}{169}\left(-6+13 t+6 e^{-3 t} \cos (2 t)+51 e^{-3 t} \sin (2 t)\right)
$$

Part 5: The Derivative Theorem and Solving IVPs

Theorem 5.1. Let $\mathcal{L}\{y(t)\}(s)=Y(s)$. Then

$$
\mathcal{L}\left\{y^{(n)}(t)\right\}(s)=s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-s^{n-3} y^{\prime \prime}(0)-\cdots-s y^{(n-2)}(0)-y^{(n-1)}(0) .
$$

In particular,

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime}(t)\right\}(s) & =s Y(s)-y(0) \\
\mathcal{L}\left\{y^{\prime \prime}(t)\right\}(s) & =s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
\mathcal{L}\left\{y^{\prime \prime \prime}(t)\right\}(s) & =s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0) \\
\mathcal{L}\left\{y^{(4)}(t)\right\}(s) & =s^{4} Y(s)-s^{3} y(0)-s^{2} y^{\prime}(s)-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)
\end{aligned}
$$

and so forth.
This lets us solve IVPs.

Example 5.1. Consider $y^{\prime}-y=1$ with the condition $y(0)=0$. Applying \mathcal{L} to both sides give us:

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime}-y\right\} & =\mathcal{L}\{1\} \\
\mathcal{L}\left\{y^{\prime}\right\}-\mathcal{L}\{y\} & =\frac{1}{s} \\
s Y(s)-y(0)-Y(s) & =\frac{1}{s} .
\end{aligned}
$$

Since $y(0)=0$, our equation is $s Y(s)-Y(s)=\frac{1}{s}$. Then we can solve for $Y(s)$.

$$
\begin{gathered}
Y(s)(s-1)=\frac{1}{s} \\
Y(s)=\frac{1}{(s-1) s}=\frac{1}{s-1}-\frac{1}{s} .
\end{gathered}
$$

Then by taking inverse Laplace transforms, we get

$$
y=\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}=e^{t}-1
$$

Example 5.2. Consider $y^{\prime \prime}+5 y^{\prime}+4 y=0$ such that $y(0)=1$ and $y^{\prime}(0)=0$. Start by taking the Laplace transform of both sides:

$$
\begin{array}{r}
\mathcal{L}\left\{y^{\prime \prime}+5 y^{\prime}+4 y\right\}=\mathcal{L}\{0\} \\
\mathcal{L}\left\{y^{\prime \prime}\right\}+5 \mathcal{L}\left\{y^{\prime}\right\}+4 \mathcal{L}\{y\}=0 \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+5(s Y(s)-y(0))+4 Y(s)=0
\end{array}
$$

Plugging in 1 for $y(0)$ and 0 for $y^{\prime}(0)$ gives us

$$
s^{2} Y(s)-s+5 s Y(s)-5+4 Y(s)=0
$$

Solving for $Y(s)$ gives us

$$
Y(s)=\frac{s+5}{s^{2}+5 s+4}=\frac{s+5}{(s+4)(s+1)}=-\frac{1}{3(s+4)}+\frac{4}{3(s+1)}
$$

Then

$$
y=-\frac{1}{3} \mathcal{L}^{-1}\left\{\frac{1}{s+4}\right\}+\frac{4}{3} \mathcal{L}\left\{\frac{1}{s+1}\right\}=-\frac{e^{-4 t}}{3}+\frac{4 e^{-t}}{3}
$$

Example 5.3. Consider $y^{\prime \prime}+9 y=e^{t}$ such that $y(0)=0$ and $y^{\prime}(0)=0$. Taking the Laplace transform on both sides gives us

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime \prime}+9 y\right\}=\mathcal{L}\left\{e^{t}\right\} \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}+9 \mathcal{L}\{y\}=\frac{1}{s-1} \\
& s^{2} Y(s)-s y(0)-y^{\prime}(0)+9 Y(s)=\frac{1}{s-1} \\
& s^{2} Y(s)+9 Y(s)=\frac{1}{s-1} \\
& Y(s)=\frac{1}{(s-1)\left(s^{2}+9\right)}=\frac{1}{10(s-1)}-\frac{s+1}{10\left(s^{2}+9\right)} .
\end{aligned}
$$

Taking the inverse Laplace transform gives us

$$
y=\frac{1}{10} \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}-\frac{1}{10} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+9}\right\}-\frac{1}{10} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+9}\right\}=\frac{e^{t}}{10}-\frac{\cos (3 t)}{10}-\frac{\sin (3 t)}{30}
$$

Example 5.4. Consider $y^{\prime \prime}+4 y^{\prime}+5 y=0$ with the initial conditions $y(0)=2$ and $y^{\prime}(0)=3$. Applying \mathcal{L} on both sides yields

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4 s Y(s)-4 y(0)+5 Y(s)=0 .
$$

Plugging in 2 for $y(0)$ and 3 for $y^{\prime}(0)$ gives us

$$
s^{2} Y(s)-2 s-3+4 s Y(s)-12+5 Y(s)=0
$$

Solving for $Y(s)$ yields

$$
Y(s)=\frac{2 s+15}{s^{2}+4 s+5}=\frac{2 s+15}{(s+2)^{2}+1}=\frac{2(s+2)+11}{(s+2)^{2}+1}=\frac{2(s+2)}{(s+2)^{2}+1}+\frac{11}{(s+2)^{2}+1} .
$$

By ignoring the shift by 2 and taking the inverse Laplace transform, we get

$$
\mathcal{L}^{-1}\left\{\frac{2 s}{s^{2}+1}\right\}+\mathcal{L}^{-1}\left\{\frac{11}{s^{2}+1}\right\}=2 \cos (t)+11 \sin (t)
$$

Applying the First Translation Theorem, we multiply this result by $e^{-2 t}$ to get

$$
y=e^{-2 t}(2 \cos (t)+11 \sin (t))
$$

Part 6: Step Functions

Definition 6.1. The unit step function is

$$
\mathcal{U}(t)= \begin{cases}0 & \text { if } t<0 \\ 1 & \text { if } t \geq 0\end{cases}
$$

\mathcal{U} is "off" / "asleep" when t is negative and "turns on"/"wakes up" as soon as t hits 0 . Usually we will work with the translated step function $\mathcal{U}(t-a)$, which wakes up at $t=a$.

The step function provides an alternate way to express piecewise functions. For instance

$$
f(t)= \begin{cases}g(t) & \text { if } 0 \leq t<a \\ h(t) & \text { if } t \geq a\end{cases}
$$

is

$$
g(t)(1-\mathcal{U}(t-a))+h(t) \mathcal{U}(t-a) .
$$

Let's examine why: when $0 \leq t<a, \mathcal{U}(t-a)=0$, so

$$
g(t)(1-\mathcal{U}(t-a))+h(t) \mathcal{U}(t-a)=g(t)(1-0)+h(t)(0)=g(t)
$$

which matches $f(t)$. And when $t \geq a, \mathcal{U}(t-a)=1$, so

$$
g(t)(1-\mathcal{U}(t-a))+h(t) \mathcal{U}(t-a)=g(t)(1-1)+h(t)(1)=h(t)
$$

which also matches $f(t)$.
Similarly,

$$
f(t)= \begin{cases}0 & \text { if } 0 \leq t<a \\ g(t) & \text { if } a \leq t<b \\ 0 & \text { if } b \leq t\end{cases}
$$

is

$$
g(t)(\mathcal{U}(t-a)-\mathcal{U}(t-b))
$$

Let's examine why: when $0 \leq t<a, \mathcal{U}(t-a)$ and $\mathcal{U}(t-b)$ are both 0 , so

$$
g(t)(\mathcal{U}(t-a)-\mathcal{U}(t-b))=g(t)(0-0)=0 .
$$

When $a \leq t<b, \mathcal{U}(t-a)=1$ and $\mathcal{U}(t-b)=0$, so

$$
g(t)(\mathcal{U}(t-a)-\mathcal{U}(t-b))=g(t)(1-0)=g(t)
$$

When $t \geq b, \mathcal{U}(t-a)$ and $\mathcal{U}(t-b)$ are both 1 , so

$$
g(t)(\mathcal{U}(t-a)-\mathcal{U}(t-b))=g(t)(1-1)=0
$$

Part 7: The Second Translation Theorem

Theorem 7.1. If $F(s)=\mathcal{L}\{f(t)\}$ and $a>0$, then

$$
\mathcal{L}\{f(t-a) \mathcal{U}(t-a)\}=e^{-a s} F(s)
$$

To compute $\mathcal{L}\{\mathcal{U}(t-a)\}$, take f to equal 1 and so $F(s)=\frac{1}{s}$. Then

$$
\mathcal{L}\{\mathcal{U}(t-a)\}=\frac{e^{-a s}}{s}
$$

Corollary 7.2. An alternate form of the Second Translation Theorem:

$$
\mathcal{L}\{g(t) \mathcal{U}(t-a)\}=e^{-a s} \mathcal{L}\{g(t+a)\}
$$

Corollary 7.3. Since the Second Translation Theorem tells us $\mathcal{L}\{f(t-a) \mathcal{U}(t-a)\}=$ $e^{-a s} F(s)$, applying \mathcal{L}^{-1} on both sides of the equation gives us

$$
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathcal{U}(t-a)
$$

Example 7.4. Find the Laplace transform of $f(t)=2(\mathcal{U}(t-2)-\mathcal{U}(t-4))-\mathcal{U}(t-4)$. First let's simplify $f(t)$ to $2 \mathcal{U}(t-2)-3 \mathcal{U}(t-4)$. Then by the Theorem and linearity:

$$
\mathcal{L}\{f(t)\}=2 \mathcal{L}\{\mathcal{U}(t-2)\}-3 \mathcal{L}\{\mathcal{U}(t-4)\}=\frac{2 e^{-2 s}-3 e^{-4 s}}{s}
$$

Example 7.5. Consider $\mathcal{L}^{-1}\left\{\frac{e^{-s}}{s+3}\right\}$. We can calculate this using the Inverse Second Translation Theorem (Corollary 7.3). First, we can ignore the e^{-s}, which gives us

$$
\mathcal{L}^{-1}\left\{\frac{1}{s+3}\right\}=e^{-3 t}
$$

Then the Inverse Second Translation Theorem says to adjust for the e^{-s} by shifting our answer by 1 and multiplying by $\mathcal{U}(t-1)$. This gives us $e^{-3(t-1)} \mathcal{U}(t-1)$ as the answer.

Example 7.6. Consider $\mathcal{L}^{-1}\left\{\frac{s e^{-\frac{\pi}{2} s}}{s^{2}+4}\right\}$. First let's ignore the $e^{-\frac{\pi}{2}}$ and calculate

$$
\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\}=\cos (2 t)
$$

Then the Inverse Second Translation Theorem says to adjust for the $e^{-\frac{\pi}{2}}$ by shifting our result by $\frac{\pi}{2}$ and multiplying by $\mathcal{U}\left(t-\frac{\pi}{2}\right)$. This gives us $\cos \left(2\left(t-\frac{\pi}{2}\right)\right) \mathcal{U}\left(t-\frac{\pi}{2}\right)$ as the answer.

Example 7.7. Solve $y^{\prime}+2 y=f(t)$ such that $y(0)=0$, where

$$
f(t)=\left\{\begin{array}{ll}
t & \text { if } 0 \leq t<1 \\
0 & \text { if } 1 \leq t
\end{array} .\right.
$$

Begin by writing $f(t)=t(1-\mathcal{U}(t-1))$, or $t-t \mathcal{U}(t-1)$. Then by the alternate form of the Second Translation Theorem (Corollary 7.2),

$$
\mathcal{L}\{t-t \mathcal{U}(t-1)\}=\frac{1}{s^{2}}-e^{-s} \mathcal{L}\{t+1\}=\frac{1}{s^{2}}-e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right) .
$$

So by applying \mathcal{L} to both sides of the DE , we get

$$
s Y(s)-y(0)+2 Y(s)=\frac{1}{s^{2}}-e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right)
$$

and by plugging in 0 for $y(0)$, we get

$$
(s+2) Y(s)=\frac{1}{s^{2}}-e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right) .
$$

Solving for $Y(s)$ gives us

$$
Y(s)=\frac{1}{s^{2}(s+2)}-e^{-s}\left(\frac{1}{s^{2}(s+2)}+\frac{1}{s(s+2)}\right)
$$

which requires a partial fraction decomposition for $\frac{1}{s^{2}(s+2)}$ and $\frac{1}{s(s+2)}$.
For $\frac{1}{s^{2}(s+2)}$:

$$
\frac{1}{s^{2}(s+2)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+2},
$$

and so

$$
1=A s(s+2)+B(s+2)+C s^{2} .
$$

Plugging in $s=0$ gives

$$
1=2 B,
$$

so $B=\frac{1}{2}$. Plugging in $s=-2$ gives

$$
1=4 C
$$

so $C=\frac{1}{4}$. Now

$$
1=A s^{2}+2 A s+\frac{1}{2} s+1+\frac{1}{4} s^{2}
$$

and the s^{2}-terms give us the equation $A+\frac{1}{4}=0$, so $A=-\frac{1}{4}$. Thus

$$
\frac{1}{s^{2}(s+2)}=-\frac{1}{4 s}+\frac{1}{2 s^{2}}+\frac{1}{4(s+2)}
$$

Now for $\frac{1}{s(s+2)}$:

$$
\frac{1}{s(s+2)}=\frac{A}{s}+\frac{B}{s+2},
$$

and so

$$
1=A(s+2)+B s
$$

Plugging in $s=0$ gives us $A=\frac{1}{2}$. Plugging in $s=-2$ gives us $B=-\frac{1}{2}$. Thus

$$
\frac{1}{s(s+2)}=\frac{1}{2 s}-\frac{1}{2(s+2)}
$$

Putting it all together:

$$
Y(s)=-\frac{1}{4 s}+\frac{1}{2 s^{2}}+\frac{1}{4(s+2)}+e^{-s}\left(-\frac{1}{4 s}+\frac{1}{2 s^{2}}+\frac{1}{4(s+2)}+\frac{1}{2 s}-\frac{1}{2(s+2)}\right),
$$

which simplifies to

$$
Y(s)=-\frac{1}{4 s}+\frac{1}{2 s^{2}}+\frac{1}{4(s+2)}+e^{-s}\left(\frac{1}{4 s}+\frac{1}{2 s}-\frac{1}{4(s+2)}\right) .
$$

First let's take the inverse Laplace transform of the first bit: $-\frac{1}{4 s}+\frac{1}{2 s^{2}}+\frac{1}{4(s+2)}$. Following The Chart, the inverse transform is $-\frac{1}{4}+\frac{t}{2}+\frac{e^{-2 t}}{4}$.

For the second bit, we will need the Inverse Second Translation Theorem (Corollary 7.3). Let's start by ignoring the e^{-s} and focus on the inverse Laplace transform of $\frac{1}{4 s}+\frac{1}{2 s}-\frac{1}{4(s+2)}$. Following The Chart, the inverse transform is $\frac{1}{4}+\frac{t}{2}-\frac{e^{-2 t}}{4}$. The Inverse Second Translation Theorem says next we have to compensate for the e^{-s} by shifting our result by 1 and multiplying by $\mathcal{U}(t-1)$. So we get

$$
\left(\frac{1}{4}+\frac{t-1}{2}-\frac{e^{-2(t-1)}}{4}\right) \mathcal{U}(t-1)
$$

Putting everything together now, we get the answer

$$
y(t)=-\frac{1}{4}+\frac{t}{2}+\frac{e^{-2 t}}{4}+\left(\frac{1}{4}+\frac{t-1}{2}-\frac{e^{-2(t-1)}}{4}\right) \mathcal{U}(t-1) .
$$

Part 8: Deflection of a Beam

Consider a beam of length L. Think of the deflection of a beam y as a function of x. If the beam carries a load of $w(x)$ per unit length (so $\int_{0}^{L} w(x) \mathrm{d} x=$ total weight), then we have the following DE for y :

$$
E I \frac{\mathrm{~d}^{4} y}{\mathrm{~d} x^{4}}=w(x)
$$

where E is elasticity and I is moment of inertia.
Example 8.1. Suppose we have a 10 ft beam clamped at both ends (meaning $y(0)=y^{\prime}(0)=$ $y(10)=y^{\prime}(10)=0$), and that 10 lbs of weight are distributed uniformly across a 2 ft span across the center of the beam. So all of the eight is concentrated in the interval $[4,6]$. Since the 10 lbs are distributed uniformly across 2 ft , that is 5 pounds per foot. The weight density function is

$$
w(x)= \begin{cases}0 & \text { if } 0 \leq x<4 \\ 5 & \text { if } 4 \leq x \leq 6 \\ 0 & \text { if } 6<x\end{cases}
$$

We will find the deflection y of the beam, with E and I left unspecified. We can set up the Boundary Value Problem

$$
E I y^{(4)}=5(\mathcal{U}(x-4)-\mathcal{U}(x-6))
$$

with the boundary conditions $y(0)=y^{\prime}(0)=y(10)=y^{\prime}(10)=0$. Applying \mathcal{L} on both sides yields

$$
E I\left(s^{4} Y(s)-s^{3} y(0)-s^{2} y^{\prime}(0)-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)\right)=5\left(\frac{e^{-4 s}}{s}-\frac{e^{-6 s}}{s}\right)
$$

The boundary conditions tell us $y(0)=0$ and $y^{\prime}(0)=0$, but tell us nothing about $y^{\prime \prime}(0)$ and $y^{\prime \prime \prime}(0)$, so we will call those c_{1} and c_{2} for now:

$$
E I\left(s^{4} Y(s)-s c_{1}-c_{2}\right)=5\left(\frac{e^{-4 s}}{s}-\frac{e^{-6 s}}{s}\right)
$$

Solving for $Y(s)$ gives us

$$
Y(s)=\frac{5}{E I}\left(\frac{e^{-4 s}}{s^{5}}-\frac{e^{-6 s}}{s^{5}}\right)+\frac{c_{1}}{s^{3}}+\frac{c_{2}}{s^{4}}
$$

The Inverse Second Translation Theorem (Corollary 7.3) tells us how to compute $\mathcal{L}^{-1}\left\{\frac{e^{-4 s}}{s^{5}}\right\}$ and $\mathcal{L}^{-1}\left\{\frac{e^{-6 s}}{s^{5}}\right\}$. First ignore the exponential functions, so all we have is $\mathcal{L}^{-1}\left\{\frac{1}{s^{5}}\right\}$. Then we find the inverse Laplace transform, which is $\frac{x^{4}}{4!}=\frac{x^{4}}{24}$. Then we adjust for that $e^{-4 s}$ by shifting this result by 4 and multiplying by $\mathcal{U}(x-4)$; and we adjust for that $e^{-6 s}$ by shifting the $\frac{x^{4}}{24}$ by 6 and multiplying by $\mathcal{U}(x-6)$. So we get

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{e^{-4 s}}{s}\right\} & =\frac{(x-4)^{4}}{24} \mathcal{U}(x-4) \\
\mathcal{L}^{-1}\left\{\frac{e^{-6 s}}{s}\right\} & =\frac{(x-6)^{4}}{24} \mathcal{U}(x-6)
\end{aligned}
$$

And remember that The Chart says the $\mathcal{L}^{-1}\left\{\frac{c_{1}}{s^{3}}\right\}=\frac{c_{1} x^{2}}{2}$ and $\mathcal{L}^{-1}\left\{\frac{c_{2}}{s^{4}}\right\}=\frac{c_{2} x^{3}}{6}$. Putting it all together, we get

$$
y(x)=\frac{5}{E I}\left(\frac{(x-4)^{4}}{24} \mathcal{U}(x-4)-\frac{(x-6)^{4}}{24} \mathcal{U}(x-6)\right)+\frac{c_{1} x^{2}}{2}+\frac{c_{2} x^{3}}{6} .
$$

Now we need to solve for c_{1} and c_{2} by using the boundary conditions $y(10)=0$ and $y^{\prime}(10)=0$. Thankfully, the step functions do not create trouble for us when we are solving: since are using $x=10$, we can plug in 10 for x in $\mathcal{U}(x-4)$ and $\mathcal{U}(x-6)$. Since $\mathcal{U}(10-4)=1$
and $\mathcal{U}(10-6)=1$, we can take the step functions to just be 1 (this also means that $\frac{\mathrm{d}}{\mathrm{d} x} \mathcal{U}(x-4)=\frac{\mathrm{d}}{\mathrm{d} x} 1=0$, and $\left.\frac{\mathrm{d}}{\mathrm{d} x} \mathcal{U}(x-6)=\frac{\mathrm{d}}{\mathrm{d} x} 1=0\right)$.

So y for $x>6$ is

$$
y(x)=\frac{5}{E I}\left(\frac{(x-4)^{4}}{24}-\frac{(x-6)^{4}}{24}\right)+\frac{c_{1} x^{2}}{2}+\frac{c_{2} x^{3}}{6}
$$

and y^{\prime} for $x>6$ is

$$
y^{\prime}(x)=\frac{5}{E I}\left(\frac{\left(4(x-4)^{3}\right.}{24}-\frac{4(x-6)^{3}}{24}\right)+c_{1} x+\frac{c_{2} x^{2}}{2} .
$$

Plugging in 10 for x in $y(x)$, we get

$$
0=\frac{5}{E I}\left(\frac{6^{4}}{24}-\frac{4^{4}}{24}\right)+50 c_{1}+\frac{1000 c_{2}}{6}
$$

Plugging in 10 for x in $y^{\prime}(x)$, we get

$$
0=\frac{5}{E I}\left(6^{2}-\frac{4^{3}}{6}\right)+10 c_{1}+50 c_{2}
$$

Simplifying everything, we get

$$
0=\frac{650}{3 E I}+50 c_{1}+\frac{500 c_{2}}{3}
$$

and

$$
0=\frac{380}{3 E I}+10 c_{2}+50 c_{3}
$$

which results in $c_{1}=\frac{37}{3 E I}$ and $c_{2}=\frac{5}{E I}$. This results in

$$
y(x)=\frac{5}{24 E I}\left((x-4)^{4} \mathcal{U}(x-4)-(x-6)^{4} \mathcal{U}(x-6)\right)+\frac{37}{6 E I} x^{2}-\frac{5}{6 E I} x^{3} .
$$

Part 9: Derivatives of Laplace Transforms

Theorem 9.1. Given $F(s)=\mathcal{L}\{f(t)\}$, then for $n=1,2,3, \ldots$,

$$
\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{\mathrm{~d}^{n}}{\mathrm{~d} s^{n}} F(s) .
$$

Example 9.2.

$$
\mathcal{L}\{t \sin (2 t)\}=-\frac{\mathrm{d}}{\mathrm{~d} s} \mathcal{L}\{\sin (2 t)\}=-\frac{\mathrm{d}}{\mathrm{~d} s} \frac{2}{s^{2}+4}=\frac{4 s}{\left(s^{2}+4\right)^{2}}
$$

Example 9.3.

$$
\mathcal{L}\left\{t^{2} e^{t}\right\}=\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}} \mathcal{L}\left\{e^{t}\right\}=\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}} \frac{1}{s-1}=\frac{2}{(s-3)^{3}}
$$

Example 9.4.

$$
\mathcal{L}\left\{t e^{t} \sin (t)\right\}=-\frac{\mathrm{d}}{\mathrm{~d} s} \mathcal{L}\left\{e^{t} \sin (t)\right\}
$$

Remember the First Translation Theorem (Theorem 3.1) says that $\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)$. So

$$
-\frac{\mathrm{d}}{\mathrm{~d} s} \mathcal{L}\left\{e^{t} \sin (t)\right\}=-\frac{\mathrm{d}}{\mathrm{~d} s} \frac{1}{(s-1)^{2}+1}=\frac{2(s-1)}{\left((s-1)^{2}+1\right)^{2}}
$$

Part 10: Convolution

Definition 10.1. Given f and g on $[0, \infty)$, the convolution of f and g is defined to be

$$
f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau
$$

Note that $f(t) * g(t)=g(t) * f(t)$, you can use a u-substitution $u=t-\tau$ to get from one to the other.

Theorem 10.2. The Convolution Theorem: If f and g have are piecewise continuous on $[0, \infty)$ and of exponential order, then

$$
\mathcal{L}\{f(t) * g(t)\}=\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}
$$

Corollary 10.3. The inverse version of the Convolution Theorem is that if $F(s)$ and $G(s)$ are Laplace transforms of f and g, respectively, then

$$
\mathcal{L}^{-1}\{F(s) G(s)\}=f(t) * g(t)
$$

Example 10.4. What is $t * e^{t}$?

$$
\int_{0}^{t} \tau e^{t-\tau} \mathrm{d} \tau=\int_{0}^{t} \tau e^{t} e^{\tau} \mathrm{d} \tau=e^{t} \int_{0}^{t} \tau e^{-\tau}
$$

Using integration by parts:

$$
\begin{array}{cc}
u=\tau & \mathrm{d} v=e^{-\tau} \mathrm{d} \tau \\
\mathrm{~d} u=\mathrm{d} \tau & v=-e^{-\tau}
\end{array}
$$

we get

$$
e^{t}\left(-\left.\tau e^{-\tau}\right|_{0} ^{t}-\int_{0}^{t}-e^{-\tau} \mathrm{d} \tau\right)=e^{t}\left(-t e^{-t}-\left.e^{-\tau}\right|_{0} ^{t}\right)=e^{t}\left(-t e^{-t}-e^{-t}+1\right)=-t-1+e^{t}
$$

Example 10.5. We can use the Convolution Theorem to compute

$$
\mathcal{L}\left\{\int_{0}^{t} \sin (\tau) \cos (t-\tau) \mathrm{d} \tau\right\}
$$

Since this is just $\mathcal{L}\{\sin (t) * \cos (t)\}$, Theorem 10.2 tells us

$$
\mathcal{L}\left\{\int_{0}^{t} \sin (\tau) \cos (t-\tau) \mathrm{d} \tau\right\}=\mathcal{L}\{\sin (t)\} \mathcal{L}\{\cos (t)\}=\frac{1}{s^{2}+1} \cdot \frac{s}{s^{2}+1}=\frac{s}{\left(s^{2}+1\right)^{2}} .
$$

Example 10.6. Find the Laplace transform $\mathcal{L}\left\{\int_{0}^{t} \cos (\tau) \mathrm{d} \tau\right\}$. Notice that $\int_{0}^{t} \cos (\tau) \mathrm{d} \tau$ is the convolution $\cos (t) * 1$. Thus

$$
\mathcal{L}\left\{\int_{0}^{t} \cos (\tau) \mathrm{d} \tau\right\}=\mathcal{L}\{\cos (t) * 1\}=\mathcal{L}\{\cos (t)\} \cdot \mathcal{L}\{1\}=\frac{s}{s^{2}+1} \cdot \frac{1}{s}=\frac{1}{s^{2}+1}
$$

Example 10.7. Find $\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}$ using convolution.

$$
\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} * \mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\}=1 * e^{-t}
$$

Using the definition of convolution, this is

$$
\int_{0}^{t} e^{-\tau} \mathrm{d} \tau=-\left.e^{-\tau}\right|_{0} ^{t}=-e^{-t}+1
$$

Notice that convolution gives an alternative to using partial fraction decomposition!

Part 11: Periodic Functions

Definition 11.1. A function $f(t)$ is periodic with period P if $f(t-P)=f(t)$ for all t. For example, the trig functions $\sin (t)$ and $\cos (t)$ are periodic with period 2π.

Theorem 11.2. If $f(t)$ is a periodic, piecewise continuous function on $[0, \infty)$ of exponential order, with period P, then

$$
\mathcal{L}\{f(t)\}(s)=\frac{1}{1-e^{-s P}} \int_{0}^{P} e^{-s t} f(t) \mathrm{d} t
$$

Example 11.3. Since $\cos (t)$ is periodic with period $2 \pi, \mathcal{L}\{\cos (t)\}=\frac{1}{1-e^{-2 \pi s}} \int_{0}^{2 \pi} e^{-s t} \cos (t) \mathrm{d} t$.
Part 12: The Dirac Delta
Definition 12.1. The unit impulse function δ_{a} is defined to be

$$
\delta_{a}(t)= \begin{cases}0 & \text { if } 0 \leq t \leq-a \\ \frac{1}{2 a} & \text { if }-a \leq t<a \\ 0 & \text { if } t \geq a\end{cases}
$$

Using step functions, we can rewrite this as

$$
\delta_{a}(t)=\frac{1}{2 a}(\mathcal{U}(t+a)-\mathcal{U}(t-a))
$$

Notice that

$$
\int_{-\infty}^{\infty} \delta_{a}(t) \mathrm{d} t=\int_{-\infty}^{-a} 0 \mathrm{~d} t+\int_{-a}^{a} \frac{1}{2 a} \mathrm{~d} t+\int_{a}^{\infty} 0 \mathrm{~d} t=1
$$

We can also shift the unit impulse function to the right by t_{0} : this gives us the function $\delta_{a}\left(t-t_{0}\right)$.
Definition 12.2. The Dirac Delta "function" is

$$
\delta\left(t-t_{0}\right)=\lim _{a \rightarrow 0} \delta_{a}\left(t-t_{0}\right) .
$$

Some properties of $\delta\left(t-t_{0}\right)$ are:

1. $\delta\left(t-t_{0}\right)= \begin{cases}\infty & \text { if } t=t_{0} \\ 0 & \text { if } t \neq t_{0}\end{cases}$
2. $\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) \mathrm{d} t=\lim _{a \rightarrow 0} \int_{-\infty}^{\infty} \delta_{a}\left(t-t_{0}\right) \mathrm{d} t=1$.
**Note that the Dirac Delta function is not actually a function.
Theorem 12.3. We can define the Laplace transform as $\lim _{a \rightarrow 0} \mathcal{L}\left\{\delta_{a}\left(t-t_{0}\right)\right\}(s)$. Then

$$
\mathcal{L}\left\{\delta\left(t-t_{0}\right)\right\}=e^{-s t_{0}}
$$

In particular, if $t_{0}=0$,

$$
\mathcal{L}\{\delta(t)\}=1
$$

Example 12.4. Suppose we have a spring and mass system with mass $m=1$, spring constant $k=1$, and with an external force of $4 \delta(t-2 \pi)$. Solve the IVP

$$
y^{\prime \prime}+y=4 \delta(t-2 \pi)
$$

such that $y(0)=0, y^{\prime}(0)=0$. Applying \mathcal{L} to both sides gives

$$
\begin{gathered}
\mathcal{L}\left\{y^{\prime \prime}+y\right\}=4 e^{-2 \pi s} \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+Y(s)=4 e^{-2 \pi s}
\end{gathered}
$$

Using 0 for $y(0)$ and 0 for $y^{\prime}(0)$, we get

$$
s^{2} Y(s)+Y(s)=4 e^{-2 \pi s}
$$

and solving for $Y(s)$ gives

$$
Y(s)=\frac{4 e^{-2 \pi s}}{s^{2}+1}
$$

We can take the inverse Laplace transform by using the Inverse Second Translation Theorem (Corollary 7.3). First ignore the $e^{-2 \pi s}$ and focus on $\mathcal{L}^{-1}\left\{\frac{4}{s^{2}+1}\right\}$, which is $4 \sin (t)$. Then we adjust for the $e^{-2 \pi s}$ by shifting this result by 2π and multiplying by $\mathcal{U}(t-2 \pi)$. Thus we get the answer

$$
y=\mathcal{L}^{-1}\left\{\frac{4 e^{-2 \pi s}}{s^{2}+1}\right\}=4 \sin (t-2 \pi) \mathcal{U}(t-2 \pi)
$$

Example 12.5. Solve the IVP $y^{\prime \prime}+y=4 \delta(t-2 \pi)$ such that $y(0)=1, y^{\prime}(0)=0$. Applying \mathcal{L} to both sides gives

$$
\begin{gathered}
\mathcal{L}\left\{y^{\prime \prime}+y\right\}=4 e^{-2 \pi s} \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+Y(s)=4 e^{-2 \pi s} .
\end{gathered}
$$

Using 1 for $y(0)$ and 0 for $y^{\prime}(0)$, we get

$$
Y(s)\left(s^{2}+1\right)-s=4 e^{-2 \pi s} .
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{4 e^{-2 \pi s}}{s^{2}+1}+\frac{s}{s^{2}+1} .
$$

We already calculated $\mathcal{L}^{-1}\left\{\frac{4 e^{-2 \pi s}}{s^{2}+1}\right\}=4 \sin (t-2 \pi) \mathcal{U}(t-2 \pi)$ in the previous example. And $\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}=\cos (t)$, from The Chart. Thus

$$
y=4 \sin (t-2 \pi) \mathcal{U}(t-2 \pi)+\cos (t)
$$

