New perspectives on geproci sets

Jake Kettinger

Colorado State University

20 June 2024

What is Geproci?

Definition

A finite set Z in \mathbb{P}^n_k is **geproci** if the projection \overline{Z} of Z from a general point P to a hyperplane $H = \mathbb{P}^{n-1}_k$ is a complete intersection in H.

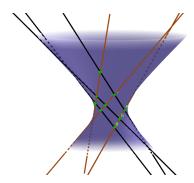
Geproci stands for **ge**neral **pro**jection is a **c**omplete **i**ntersection. The only nontrivial examples known are for n = 3. In this case a hyperplane is a plane. A reduced set of points in a plane is a complete intersection if it is the transverse intersection of two algebraic curves, like this.

For #Z = ab ($a \le b$), Z is (a, b)-geproci if \overline{Z} is the intersection of a degree a curve and a degree b curve.

Trivial Cases: Coplanar Points and Grids

A set of coplanar points in \mathbb{P}^3 is geproci if and only if it is already a complete intersection in the plane containing it.

The easiest non-coplanar examples are grids, which are sets of points that form the intersection of two families of mutually-skew lines.

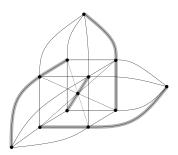


Summary of Nontrivial Cases

Half-Grids: A procedure is known for creating an (a, b)-geproci half-grid for $4 \le a \le b$, but it is not known what other examples there can be.

Non-Half-Grids: Until recently, only a few examples were known and there was no known way to generate more.

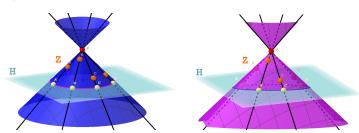
Because of this, nontrivial non-half-grids have been mysterious; it's easier to get an idea of what a half-grid is like.



The D_4 configuration is a (3,4)-geproci half-grid.

Cones and Geproci

It is interesting when there is a cone through Z whose vertex is a general point P, and which meets H in a curve containing the projected image of Z. For Z to be (a,b)-geproci, there needs to be two such cones, of degrees a,b.



Geometry in Positive Characteristic

Geometry gets weird in positive characteristic p! For example, there's Fermat's Little Theorem and there's the Freshman's Dream (aka Frobenius): $(x+y)^p = x^p + y^p$. But this weirdness makes being geprocivery natural!

Cones in $\mathbb{P}^3_{\mathbb{F}_q}$ of degree a=q+1

Consider $Z = \mathbb{P}^3_{\mathbb{F}_q}$.

Note that
$$\#Z=\frac{q^4-1}{q-1}=q^3+q^2+q+1=(q+1)(q^2+1).$$
 There is a unique degree $q+1$ cone containing Z whose vertex is at a

There is a unique degree q+1 cone containing Z whose vertex is at a general point $P=(a,b,c,d)\in\mathbb{P}^3_k$, $k=\overline{\mathbb{F}}_q$. This cone meets every line through two points of $\mathbb{P}^3_{\mathbb{F}_q}$ transversely. It is given by

$$\begin{vmatrix} a & b & c & d \\ a^q & b^q & c^q & d^q \\ x & y & z & w \\ x^q & y^q & z^q & w^q \end{vmatrix} = 0$$

Spreads in $\mathbb{P}^3_{\mathbb{F}_q}$

Is there a cone of degree $b=q^2+1$? There is! Each line of $\mathbb{P}^3_{\mathbb{F}_q}$ contains q+1 points. Can $\mathbb{P}^3_{\mathbb{F}_q}$ be partitioned by mutually-skew lines? Yes! Such a partition is called a **spread**, a name from combinatorics. The fibers S^1 of the Hopf fibration H map to the fibers $\mathbb{P}^1_{\mathbb{R}}$ of F, which give an example of a spread in $\mathbb{P}^3_{\mathbb{R}}$.

$$\begin{array}{ccc} S^3 & \xrightarrow{H} & S^2 \\ \downarrow A & & \downarrow = \\ \mathbb{P}^3_{\mathbb{R}} & \xrightarrow{F} & \mathbb{P}^1_{\mathbb{C}} \end{array}$$

For $\mathbb{P}^3_{\mathbb{F}_q}$, there are q^2+1 lines in the spread. The join of each line of the spread with P is our cone.

A Theorem

The following result gives a new method of constructing nontrivial geproci sets.

Theorem (K-)

The set of points $\mathbb{P}^3_{\mathbb{F}_q}$ is $(q+1, q^2+1)$ -geproci in \mathbb{P}^3_k , where k is an algebraically closed field containing \mathbb{F}_q .

Note when q=2, we get a non-trivial (3,5)-geproci set! No nontrivial (3,5)-geproci set exists in characteristic 0 [CFFHMSS], so this is new.

Partial Spreads

Definition

A partial spread of $\mathbb{P}^3_{\mathbb{F}_q}$ with deficiency d is a set of q^2+1-d mutually-skew lines. A **maximal partial spread** is a partial spread of positive deficiency that is not contained in any larger partial spread.

Complements of Maximal Partial Spreads

Maximal partial spreads give a way of producing infinitely many nontrivial non-half-grids.

Theorem (K-)

The complement of a maximal partial spread of deficiency d is a non-trivial $\{q+1,d\}$ -geproci set. Furthermore, when d>q+1, the complement is a non-trivial non-half-grid.

In 1993 and 2002, Heden proved for $q \ge 7$ that there are maximal partial spreads of every deficiency d in the interval $q-1 \le d \le \frac{q^2+1}{2}-6$.

Dual-Geproci Configurations of Lines

Definition

A configuration of lines \mathcal{L} in \mathbb{P}^3 is **dual-geproci** if the general projection of \mathcal{L} into a plane H is dual to a complete intersection of points in H^* .

This projection function on lines can be thought of as a function within Gr(2,4): Let $P \in \mathbb{P}^3$ and $H \in \mathbb{P}^{3*}$, then define

$$\pi_{P,H}: \mathit{Gr}(2,4) \setminus \Sigma_2(\mathcal{V}_P) o \Sigma_{1,1}(\mathcal{V}_H)$$

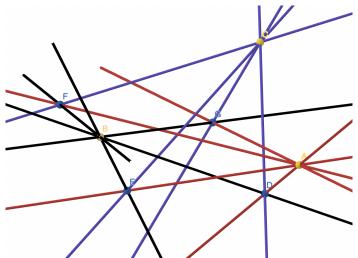
as

$$\pi_{P,H}(L) = \Sigma_{1,1}(\mathcal{V}_{\overline{PL}}) \cap \Sigma_{1,1}(\mathcal{V}_H),$$

where \mathcal{V}_P , $\mathcal{V}_{\overline{PL}}$, \mathcal{V}_H are any flags containing P, \overline{PL} , and H, respectively. Then a finite set $\mathcal{L} \subseteq Gr(2,4)$ is dual-geproci if $\pi_{P,H}(\mathcal{L})$ is a complete intersection in the plane $\Sigma_{1,1}(\mathcal{V}_H)$ for a general $P \in \mathbb{P}^3$.

Complete Bipartite Graphs

So far, the only known examples of dual-geproci sets come from complete bipartite graphs in \mathbb{P}^3 . These are the equivalent of grids, because the image of \mathcal{L} is a complete intersection of two unions of lines in $\Sigma_{1,1}(\mathcal{V}_H)$.



Geproci With Infinitely-Near Points

Theorem (K-)

Let char k = 2. Let $Z = \{(1,0,0,0) \times 2, (0,1,0,0) \times 2, (0,0,1,0) \times 2\}$ (where $p_i \times 2$ represents an ordinary point $p_i \in \mathbb{P}^3_k$ and a point q_i infinitely near p_i), with the infinitely-near point at each ordinary point corresponding to the tangent along the line through p_i and (0,0,0,1). Then Z is a (2,3)-geproci half-grid.

No (2,3) half-grid is known in characteristic 0.

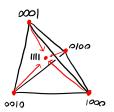
Another Example

Theorem (K-)

Let

$$Z = \{(1,0,0,0) \times 2, (0,1,0,0) \times 2, (0,0,1,0) \times 2, (0,0,0,1) \times 2, (1,1,1,1)\},$$
 with each infinitely-near point corresponding to the line containing $(1,1,1,1)$. Then Z is $(3,3)$ -geproci. It is a non-trivial non-half-grid.

No nontrivial (3,3)-geproci sets are known in characteristic 0.



Bibliography

- L. Chiantini, L. Farnik, G. Favacchio, B. Harbourne, J. Migliore, T. Szemberg, and J. Szpond. Configurations of points in projective space and their projections. arXiv:2209.04820, 2022.
- O. Heden. Maximal partial spreads and the modular n-queen problem III. Discrete Mathematics, 243:135–150, 2002.
- O. Heden. Maximal partial spreads and the modular n-queen problem. Discrete Mathematics, 120:75–91, 1993.