Groupoids of Configurations of Lines

Jake Kettinger

20 September 2024

Jake Kettinger (CSU) **[Groupoids of Configurations of Lines](#page-17-0)** 20 September 2024 1/18

4 0 8

Þ

A finite set Z in \mathbb{P}^n_k is **geproci** if the projection \overline{Z} of Z from a general point P to a hyperplane $H = \mathbb{P}_k^{n-1}$ $\binom{n-1}{k}$ is a complete intersection in H.

Geproci stands for **general projection is a complete intersection**. The only nontrivial examples known are for $n = 3$. In this case a hyperplane is a plane. A reduced set of points in a plane is a complete intersection if it is the transverse intersection of two algebraic curves, [like](https://www.desmos.com/calculator/nrcldh60hs) [this.](https://www.desmos.com/calculator/nrcldh60hs)

For $\#Z = ab$ ($a \le b$), Z is (a, b)-geproci if \overline{Z} is the intersection of a degree a curve and a degree b curve.

Given a $t\geq 0$ and field k , a spread of \mathbb{P}_k^{2t+1} $\frac{2t+1}{k}$ is a set of mutually-skew *t*-planes that partition \mathbb{P}_{k}^{2t+1} $\frac{2t+1}{k}$.

Spreads are known to exist for any $t > 0$ for $k =$ any finite field, and for $t = 0, 1$ for $k = \mathbb{R}$.

Spreads are instrumental for the proof that $\mathbb{P}^3_{\mathbb{F}_q}$ is geproci under $\mathbb{P}^3_{\overline{\mathbb{F}}_q}.$ In this case, a spread is a partition of $\mathbb{P}^3_{\mathbb{F}_q}$ into lines.

The Hopf fibration $H:S^3\rightarrow S^2$ can yield a spread over $\mathbb{P}^3_\mathbb{R}.$

Let $L_{a,b}$ denote the line joining the points $(1,0,a,b)$ and $(0,1,-b,a)$, and let L_{∞} denote the line joining $(0, 0, 1, 0)$ and $(0, 0, 0, 1)$. Then $S = \{L_{a,b} : a, b \in \mathbb{R}\} \cup \{L_{\infty}\}\$ the the spread yielded by the Hopf fibration. Note that $L_{a,b}$ and $L_{c,d}$ are indeed skew for $(a, b) \neq (c, d)$. We can see this because

$$
\begin{vmatrix} 1 & 0 & a & b \\ 0 & 1 & -b & a \\ 1 & 0 & c & d \\ 0 & 1 & -d & c \end{vmatrix} = (a - c)^2 + (b - d)^2,
$$

which can only be 0 if $(a, b) = (c, d) \in \mathbb{R}^2$.

Furthermore, the point $(a, b, c, d) \in \mathbb{P}^3_\mathbb{R}$ is on the line $L_{\frac{ac+bd}{a^2+b^2}, \frac{ad-bc}{a^2+b^2}}$ if $(a, b) \neq (0, 0)$, and on L_{∞} otherwise. So this is indeed a spread over $\mathbb{P}^3_{\mathbb{R}}$!

Since \mathbb{F}_q is not algebraically closed, we can mimic the construction of the Hopf spread!

- First let q be odd. Then there is some $\theta \in \mathbb{F}_q$ such that $x^2 - \theta \in \mathbb{F}_q[x]$ is irreducible. Defining $L_{a,b} = \overline{(1,0,a,b),(0,1,\theta b,a)}$ for $(a, b) \in \mathbb{F}_a$ and $L_\infty = \overline{(0, 0, 1, 0), (0, 0, 0, 1)}$ yields a spread over $\mathbb{P}^3_{\mathbb{F}_q}.$
- Now let q be even. Then there is some $\psi \in \mathbb{F}_q$ such that $x^2+x+\psi\in \mathbb{F}_q[x]$ is irreducible. Defining $L_{a,b} = (1, 0, a, b), (0, 1, \psi b, a + b)$ and $L_{\infty} = (0, 0, 1, 0), (0, 0, 0, 1)$ yields a spread over $\mathbb{P}^3_{\mathbb{F}_q}.$

Spreads constructed using this method will be known as "Hopf spreads."

A regulus is a set of mutually-skew lines $\mathcal R$ such that there is a quadric surface Q where $\bigcup_{R\in\mathcal{R}}R=Q$, [like this.](https://www.desmos.com/3d/ea9w3u0zkt)

Every regulus R admits an opposite regulus R^* .

The Hopf spread contains reguli: for example $\mathcal{R} = \{L_{a,0} : a \in k\} \cup \{L_{\infty}\}\$ is a regulus.

Given a spread $\mathcal S$ containing a regulus $\mathcal R$, the set of lines $(\mathcal S \setminus \mathcal R) \cup \mathcal R^*$ is also a spread.

It was once conjectured that every spread could be constructed by starting with the Hopf spread and replacing a succession of reguli with their opposites. This is now known to be false. In fact, there are spreads that contain no reguli whatsoever! 299 Note that a spread over $\mathbb{P}^3_{\mathbb{F}_q}$ comprises q^2+1 mutually-skew lines.

Definition

A **partial spread** of $\mathbb{P}^3_{\mathbb{F}_q}$ with **deficiency** d is a set of q^2+1-d mutually-skew lines. A maximal partial spread is a partial spread of positive deficiency that is not contained in any larger partial spread.

Maximal partial spreads are also instrumental to the study of geproci sets; in fact, given a maximal partial spread \mathcal{M} , the set $\mathbb{P}^3_{\mathbb{F}_q}\setminus (\bigcup_{L\in\mathcal{M}}L)$ is geproci.

 Ω

Given three lines $L_1, L_2, L_3 \subseteq \mathbb{P}^3_k$ where $L_1 \cap L_2 = L_2 \cap L_3 = \emptyset$, we can define the function $\pi(L_1, L_2, L_3) : L_1 \to L_3$ as follows: take $p \in L_1$. Then there is a unique line T such that $p \in T$, $T \cap L_2 \neq \emptyset$, and $T \cap L_3 \neq \emptyset$. Then define $\pi(L_1, L_2, L_3)(p) = T \cap L_3$. This is the **projection** of L_1 to L_3 via L_2 .

[Here is a demonstration.](https://www.desmos.com/3d/gaebe8rmy3)

 200

A groupoid is a category G where every morphism is invertible.

• For any object $G \in \mathcal{G}$, Hom $_G(G, G) = \text{Aut}_{\mathcal{G}}(G)$ is a group.

Aut_G(G) is a "group of the groupoid."

• Whenever $Hom_G(G_1, G_2) \neq \emptyset$, then $Aut_G(G_1) \cong Aut_G(G_2)$.

So when $Hom_G(G_1, G_2) \neq \emptyset$ for all $G_1, G_2 \in \mathcal{G}$, \mathcal{G} induces only one group of the groupoid, up to isomorphism. Then it makes sense to say "the" group of the groupoid, Aut_G .

 QQ

Theorem

Let $\mathcal L$ be a set of lines in $\mathbb P_k^3$. Define Π to be the composition-closure of the set of functions $\{\pi(L_i, L_j, L_k) : L_i, L_j, L_k \in \mathcal{L}, L_i \cap L_j = L_j \cap L_k = \emptyset\}.$ Then (\mathcal{L}, Π) is a groupoid.

In this case, any group of the groupoid is a subgroup of $\mathsf{Aut}(\mathbb{P}^1_k) \cong \mathsf{PGL}(2,k).$

What can we say about this groupoid and its corresponding group(s)? In characteristic 0, when is it finite versus infinite? When does $Aut_{(C,\Pi)}(L)$ have finite orbits, or finitely many orbits?

NOTE: If $\mathcal L$ contains lines L_i, L_j, L_k where $L_i \cap L_j \neq \varnothing$, then neither $\pi(L_i,L_j,L_k)$ nor $\pi(L_k,L_j,L_i)$ are defined. So when can we characterize whether $\mathsf{Hom}_{(\mathcal{L},\Pi)}(L_i,L_k)=\varnothing?$ If $\mathcal{L}=\mathcal{R}\cup\mathcal{R}^*$, then $\mathsf{Hom}(R,R')=\varnothing$ for all $R \in \mathcal{R}$ and $R' \in \mathcal{R}^*$. Ω In her 2024 thesis, Ganger used the technique of **transversals** to prove the following theorem:

Theorem (Ganger Corollary 2.5)

The group of the groupoid for the Hopf spread induced by the degree-2 field extension $\mathbb{F}_{q^2}/\mathbb{F}_q$ over a finite field is isomorphic to the quotient F ∗ $_{q^{2}}^{*}/\mathbb{F}_{q}^{*}\cong\mathcal{C}_{q+1}.$

Definition

Given a set of lines ${\mathcal L}$ in \mathbb{P}^3_k , a transversal is a line $\,\mathcal{T}$ in $\mathbb{P}^3_{\overline{k}}$ $\frac{3}{k}$ such that $T \cap \overline{L} \neq \emptyset$ for all $L \in \mathcal{L}$.

The Hopf spread has exactly two transversals T_1, T_2 for any finite field. The intersection of transversal with a line $L \in S$ is a fixed point of Aut_(S,Π)(L)!

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

G.

Representing $Aut_G \leq PGL(2, k)$

Let $U=\overline{u_0u_1},\,V=\overline{v_0v_1},\,W=\overline{w_0w_1}$ be lines in $\mathbb{P}^3.$ Then any point on U can be written as ${a} u_0 + b u_1$ for $({\sf a},{\sf b})\in{\mathbb P}^1$ and any point on W can be written as $\mathit{cw}_0 + \mathit{dw}_1$ for $(c,d) \in \mathbb{P}^1$. Then if

$$
cw_0 + dw_1 = \pi(U, V, W)(au_0 + bu_1),
$$

we must have $\overline{(au_0 + bu_1)(cw_0 + dw_1)} \cap V \neq \emptyset$. Therefore the wedge product

$$
(au_0 + bu_1) \wedge v_0 \wedge v_1 \wedge (cw_0 + dw_1) = 0.
$$

We can write this as a matrix formula

$$
(a \quad b) \begin{pmatrix} u_0 \wedge v_0 \wedge v_1 \wedge w_0 & u_0 \wedge v_0 \wedge v_1 \wedge w_1 \\ u_1 \wedge v_0 \wedge v_1 \wedge w_0 & u_1 \wedge v_0 \wedge v_1 \wedge w_1 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = 0,
$$

or rewrite this equivalently:

$$
\begin{pmatrix} -u_0 \wedge v_0 \wedge v_1 \wedge w_1 & -u_1 \wedge v_0 \wedge v_1 \wedge w_1 \\ u_0 \wedge v_0 \wedge v_1 \wedge w_0 & u_1 \wedge v_0 \wedge v_1 \wedge w_0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} c \\ d \end{pmatrix}.
$$

The 2×2 matrix

$$
\begin{pmatrix} -u_0 \wedge v_0 \wedge v_1 \wedge w_1 & -u_1 \wedge v_0 \wedge v_1 \wedge w_1 \\ u_0 \wedge v_0 \wedge v_1 \wedge w_0 & u_1 \wedge v_0 \wedge v_1 \wedge w_0 \end{pmatrix}
$$

represents $\pi(U, V, W)$, given parametrizations $U = \overline{u_0 u_1}, V = \overline{v_0 v_1}, W = \overline{w_0 w_1}.$ Note $r \wedge s \wedge t \wedge u = \det (r \ s \ t \ u).$

This allows us to use computational methods to experiment on the group of the groupoid!

 Ω

Example: The D_4 configuration

The D_4 configuration is a $(3, 4)$ -geproci half-grid. It is a $(12₄, 16₃)$ -configuration. What is the group of the groupoid of the 16 lines?

Theorem

Let $\mathcal L$ be the 16 lines of the D_4 configuration and let Π be the composition-closure of the projection functions. Then the group of the groupoid $\mathcal{G} = (\mathcal{L}, \Pi)$ is $Aut_{\mathcal{G}} \cong \mathcal{S}_3$.

Argument boils down to:

- $\mathsf{Hom}_{\mathcal{G}}(L,L')\neq\varnothing$ for $L,L'\in\mathcal{L}$, so $\mathsf{Aut}_{\mathcal{G}}$ is well-defined.
- Let $q\in L$ be a quadruple point and $\pi\in\mathsf{Hom}_\mathcal{G}(L,L')$. Then $\pi(q)$ is a quadruple point. So $Aut_G \leq S_3$.
- We have found automorphisms in $Aut_G(L)$ of orders 2 and 3, so Aut $\varsigma \cong \mathcal{S}_3$.

 QQ

Let $\{A, B, C\}$ be a set of three letters, and consider the group $(\mathbb{Z}/2\mathbb{Z})^2=\langle z_1,z_2\rangle$. Then one can label the vertices of the D_4 configuration with the elements of $\{A,B,C\} \oplus (\mathbb{Z}/2\mathbb{Z})^2$ in such a way that there is a bijective correspondence between the lines of the D_4 and triples of the form ${A+g, B+g', C+g'': g+g'+g''=0} \subseteq {A, B, C} \oplus (\mathbb{Z}/2\mathbb{Z})^2.$

This makes the theorem on the previous slide easier to prove because you can divide the vertices into "types" A , B , and C .

 200

A Helpful Labeling

- ${A, B, C}$
- $\bullet \{A + z_1, B + z_2, C + z_1 + z_2\}$
- \bullet {A + z₂, B + z₁ + z₂, C + z₁}
- $\bullet \{A + z_1 + z_2, B + z_1, C + z_2\}$

 \leftarrow \Box

э