

Jake Kettinger

New Perspectives on Geproci-ness

Jake Kettinger

16 November 2022

What is Geproci?

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger

Definition

A finite set Z in \mathbb{P}^n_k is ${\bf generic}$ approci if the projection \overline{Z} of Z from a general point P to a hyperplane is a complete intersection in $\mathbb{P}^{n-1}_{\scriptscriptstyle{I}}$ $\frac{n-1}{k}$.

Geproci stands for general projection is a complete intersection.

The only nontrivial examples known are for $n = 3$. In this case a hyperplane is a plane H . A reduced set of points in a plane is a complete intersection if it is the transverse intersection of two algebraic curves, [like this.](https://www.desmos.com/calculator/nrcldh60hs)

For $\#Z = ab$ $(a \leq b)$, Z is (a, b) -geproci if \overline{Z} is the intersection of a degree a curve and a degree b curve.

What We Know: Coplanar Points

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger A set of coplanar points can be geproci only if they are already a complete intersection in the plane they're on.

What We Know: Grids

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger

Definition

A grid in \mathbb{P}^3 is a set of points that form the intersection of two families of mutually-skew lines.

Every grid is geproci, and the projection of the points of a grid is a complete intersection of two unions of lines.

Grids and coplanar points are the trivial cases of geproci-ness.

An (a, b) -grid with $3 \le a \le b$ is always a set of points on a [smooth quadric.](https://www.geogebra.org/3d/mpfumzhd)

What We Know: D_4

New **Perspectives** on [Geproci-ness](#page-0-0)

> Jake Kettinger

 D_4 is a set of 12 points and 16 3-rich lines. It is $(3, 4)$ -geproci and the smallest non-trivial geproci set in characteristic 0.

 D_4 is a half-grid. It is also the only non-trivial $(3, b)$ -geproci set where $b > 3$ in characteristic 0.

What We Know: D_4

New **Perspectives** on [Geproci-ness](#page-0-0)

> Jake Kettinger

 D_4 is a set of 12 points and 16 3-rich lines. It is $(3, 4)$ -geproci and the smallest non-trivial geproci set in characteristic 0.

 D_4 is a half-grid. It is also the only non-trivial $(3, b)$ -geproci set where $b > 3$ in characteristic 0.

Cones and Geproci

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger It is of interest when a cone through Z whose vertex is a general point P , and which meets H in a curve containing the projected image of Z. When Z is (a, b) -geproci, there are two such cones, of degrees a, b .

Geometry in Positive Characteristic

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger Geometry gets weird in positive characteristic! You may already be familiar with $\mathbb{P}^2_{\mathbb{Z}/2\mathbb{Z}}$, aka the **Fano Plane**.

Cones in $\mathbb{P}^3_{\mathbb{F}_q}$ of degree $a=q+1$

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger It turns out geprociness is very natural in positive characteristic.

Note that
$$
\# \mathbb{P}_{\mathbb{F}_q}^3 = \frac{q^4 - 1}{q - 1} = q^3 + q^2 + q + 1 = (q + 1)(q^2 + 1).
$$

There is a degree $q+1$ cone containing $\mathbb{P}^3_{\mathbb{F}_q}$ whose vertex is at a general point $P=(a,b,c,d)\in\mathbb{P}^3_k$, $k=\overline{\mathbb{F}}_q.$ This cone is given by

$$
(cqd - cdq)(xqy - xyq) - (bqd - bdq)(xqz - xzq)
$$

+ (b^qc - bc^q)(x^qw - xw^q) + (a^qd - ad^q)(y^qz - yz^q)
-(a^qc - ac^q)(y^qw - yw^q) + (a^qb - ab^q)(z^qw - zw^q)

Spreads in $\mathbb{P}^3_{\mathbb{F}_q}$

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger

Is there a cone of degree $b=q^2+1$? There is!

Each line of $\mathbb{P}^3_{\mathbb{F}_q}$ contains $q+1$ points. Can $\mathbb{P}^3_{\mathbb{F}_q}$ be partitioned by q^2+1 mutually-skew lines? Yes! Such a partition is called a spread.

The join of a general point P with the lines of a spread gives the desired cone of degree $q^2+1.$

Existence of Spreads

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger

Theorem (Bruck and Bose '63)

Let $\mathbb{P}^{2t-1}_{\mathbb{F}_q}$ be an odd-dimensional projective space over a field \mathbb{F}_q of size q, where q is a power of a prime. Then there exists a spread in $\mathbb{P}_{\mathbb{F}_q}^{2t-1}$.

Proof.

Let $L = \mathbb{F}_{q^{2t}}$, $K = \mathbb{F}_{q^t}$, and $F = \mathbb{F}_q \subseteq K \subseteq L$. Then L is a 2-dimensional vector space over K , and K is a t-dimensional vector space over $F.$ Hence, $\mathbb{P}_{\mathbb{F}_q}^{2t-1}=\mathbb{P}(L/F)$ and $\mathbb{P}^1_{\mathbb{F}_{q^t}}=\mathbb{P}(L/K).$ The set S of all 1-dimensional vector subspaces of L over K is also a set of t -dimensional vector subspaces of L over F . And S is simultaneously a spread of \mathbb{P}^1_K and a spread of \mathbb{P}^{2t-1}_F $\frac{2t-1}{F}$.

A Theorem

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger

Theorem (K–)

The set of points $\mathbb{P}^3_{\mathbb{F}_q}$ is $(q+1,q^2+1)$ -geproci in \mathbb{P}^3_k , where k is an algebraically closed field containing \mathbb{F}_q .

Note when $q = 2$, we get a non-trivial $(3, 5)$ -geproci set! These cannot happen in characteristic 0.

Partial Spreads

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger

Definition

A **partial spread** of $\mathbb{P}^3_{\mathbb{F}_{q}}$ with deficiency d is a set of q^2+1-d mutually-skew lines. A maximal partial spread is a partial spread of positive deficiency that is not contained in any larger partial spread.

Theorem $(K-)$

The complement of a maximal partial spread of deficiency d is a non-trivial $\{q+1, d\}$ -geproci set. Furthermore, when $d > q + 1$, the complement is a non-trivial non-half-grid.

In 1965, Dale Mesner provided a lower bound for the size of the deficiency for maximal partial spreads at $\sqrt{q} + 1 \leq d$. Glynn provided an upper bound of $d \leq (q-1)^2$.

The field \mathbb{F}_7 and Gorenstein Configurations

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger

The maximal partial spreads in $\mathbb{P}^3_{\mathbb{F}_7}$ have been classified by Soicher in 2000. They all comprise 45 lines, and their complements are configurations of 40 points.

Each complement is $(5, 8)$ -geproci and is a non-half-grid. Furthermore, at least four of the fifteen are different up to projective equivalence and are Gorenstein! The four configurations I tested so far have stabilizers in $PGL(4, 7)$ of different sizes (10, 20, 60, and 120) and so are not projectively equivalent.

In characteristic 0, only one non-trivial Gorenstein configuration is known up to projective equivalence, also a configuration of 40 points.

Infinitely-Near Points

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger

Definition

Let X be an algebraic variety and let $P \in X$. The point Q is **infinitely-near** P if Q is on the exceptional locus of the blowup of X at P. (Intuitively, Q is a tangent direction at P.)

Abuse of notation: Technically, $Q \in BL_P(X)$, but we will be speaking of infinitely-near points as if they were points of X itself.

Geproci With Infinitely-Near Points

Theorem (K–)

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger

Let char $k = 2$. Let $Z = \{(1, 0, 0, 0) \times 2, (0, 1, 0, 0) \times 2, (0, 0, 1, 0) \times 2\}$ (where $p_i \times 2$ represents an ordinary point $p_i \in \mathbb{P}^3_k$ and a point q_i infinitely near p_i), with the infinitely-near point at each ordinary point corresponding to the tangent along the line through p_i and $(0, 0, 0, 1)$.

Then Z is a $(2, 3)$ -geproci half-grid.

Another Example

Theorem (K–)

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger

Let $Z = \{(1, 0, 0, 0) \times 2, (0, 1, 0, 0) \times 2, (0, 0, 1, 0) \times \}$ $2, (0, 0, 0, 1) \times 2, (1, 1, 1, 1)$, which each infinitely-near point corresponding to the line containing $(1, 1, 1, 1)$. Then Z is a $(3, 3)$ -geproci. It is a non-trivial non-half-grid.

New **Perspectives** on [Geproci-ness](#page-0-0)

Jake Kettinger

- 1. Do infinitely-near points provide new examples of non-trivial geproci sets in characteristic 0?
- 2. Does taking higher-order infinitely-near points provide new examples of geproci sets?
- 3. Do maximal partial spreads provide new examples of geproci sets that work in characteristic 0?
- 4. Can geproci sets give new results on spreads?