1 t-Norms and Fuzzy Logic

Definition 1. A **t-norm** is a function $T : [0,1] \times [0,1] \to [0,1]$ that satisfies the following four properties:

- 1. Commutativity,
- 2. Monotonicity: $T(a,b) \leq T(c,d)$ if $a \leq c$ and $b \leq d$,
- 3. Associativity: T(a, T(b, c)) = T(T(a, b), c),
- 4. the number 1 acts as an identity: T(a, 1) = a.

Definition 2. A **negator** $n:[0,1] \to [0,1]$ is a monotonically decreasing function where n(0) = 1 and n(1) = 0. A negator is called

- strict if it is strictly decreasing, and
- strong if it is strict and involutive: n(n(x)) = x for all $x \in [0, 1]$.

Definition 3. A **t-conorm** is a function \perp : $[0,1] \times [0,1] \to [0,1]$ that satisfies the following four properties:

- 1. Commutativity,
- 2. Monotonicity: $\perp (a, b) < \perp (c, d)$ if a < c and b < d,
- 3. Associativity: $\perp (a, \perp (b, c)) = \perp (\perp (a, b), c)$,
- 4. the number 0 acts as an identity: $\perp (a, 0) = a$.

Given a t-norm T and a negator n, the **t-conorm** induced by (T,n) is a function \bot : $[0,1]\times[0,1]\to[0,1]$ such that $\bot(a,b)=n(\mathsf{T}(n(a),n(b)))$. If n is a strong negator, (T,\bot,n) is a **De Morgan triplet**.

Throughout, we will use the negator n(x) = 1 - x. There are a number of different interesting t-norms and their respective t-conorms, as tabulated below.

Type	t-Norm	t-Conorm
Gödel	$T(a,b) = \min(a,b)$	$\perp (a,b) = \max(a,b)$
Probabilistic	T(a,b) = ab	$\perp (a,b) = a + b - ab$
Łukasiewicz	$T(a,b) = \max(0,a+b-1)$	$\perp (a,b) = \min(1,a+b)$
Drastic	$T(a,b) = \begin{cases} b & a = 1\\ a & b = 1\\ 0 & \text{otherwise} \end{cases}$	$\perp (a,b) = \begin{cases} b & a = 0 \\ a & b = 0 \\ 1 & \text{otherwise} \end{cases}$
Nilpotent	$T(a,b) = \begin{cases} \min(a,b) & a+b > 1\\ 0 & \text{otherwise} \end{cases}$	$\perp (a,b) = \begin{cases} \max(a,b) & a+b < 1\\ 1 & \text{otherwise} \end{cases}$
Einstein-Hamacher	$T(a,b) = \begin{cases} 0 & a=b=0\\ \frac{ab}{a+b-ab} & \text{otherwise} \end{cases}$	$\perp (a,b) = \frac{a+b}{1+ab}$

A fuzzy logic system is one that assigns truth values (veracity) to propositions: given a proposition $P, v(P) \in [0,1]$ is its veracity. Then we use a De Morgan triplet (T, \bot, n) to perform algebra on the veracities of (combinations of) conjunctions, disjunctions, and negations of propositions. In particular, given propositions P and Q, we have the following:

- $v(P \wedge Q) = \mathsf{T}(v(P), v(Q)),$
- $v(P \lor Q) = \perp (v(P), v(Q)),$
- $v(\neg P) = n(v(P))$.

Given two propositions P and Q, the proposition $P \Rightarrow Q$ is taken to mean the disjunction $Q \vee \neg P$. Thus

$$v(P \Rightarrow Q) = \perp (v(Q), n(v(P))).$$

Let's look at the equation

$$v(P \Rightarrow Q) = v(Q)$$

under different norms. First, under the Gödel norms, we have

$$\max(v(Q), 1 - v(P)) = v(Q),$$

and so

$$v(Q) \ge 1 - v(P),$$

and so $v(Q) + v(P) \ge 1$.

Under the probabilisite norms,

$$v(P) + v(Q) - v(P)v(Q) = v(Q),$$

SO

$$v(P)(1 - v(Q)) = 0$$

so v(P) = 0 or v(Q) = 1.

Under Łukasiewicz norms,

$$\min(1, 1 - v(P) + v(Q)) = v(Q)$$

so either v(Q) = 1 or v(Q) = 1 - v(P) + v(Q) and so v(P) = 0. Under Einstein-Hamacher,

$$\frac{v(Q) + 1 - v(P)}{1 + (1 - v(P))v(Q)} = v(Q)$$

$$v(Q) + 1 - v(P) = v(Q) + v(Q)^{2} - v(Q)^{2}v(P),$$

SO

$$v(Q)^{2}(1 - v(P)) = 1 - v(P)$$

so either v(P) = 1 or v(Q) = 1.

2 Łukasiewicz Fuzzy Logic

Łukasiewicz fuzzy logic uses the standard negation n(x) = 1 - x two conjuctions (weak \land and strong \otimes) and two disjunctions (weak \lor and strong \oplus):

- $v(P \wedge Q) = \min(v(P), v(Q))$ (Gödel)
- $v(P \otimes Q) = \max(0, v(P) + v(Q) 1)$ (Łukasiewicz)
- $v(P \lor Q) = \max(v(P), v(Q))$ (Gödel)
- $v(P \oplus Q) = \min(1, v(P) + v(Q))$ (Łukasiewicz)

and uses strong disjunction for implications and strong conjunction for logical equivalence:

- $v(P \implies Q) = v(Q \oplus \neg P) = \min(1, v(Q) + 1 v(P)),$
- $v(P \iff Q) = v((P \implies Q) \otimes (Q \implies P)) = \max(0, \min(1, v(Q) + 1 v(P)) + \min(1, v(P) + 1 v(Q)) 1) = 1 |v(P) v(Q)|.$

Łukasiewicz fuzzy logic also has a **doubtful** proposition: $\delta(P) = P \iff \neg P$, and a modal logic:

- $\bullet \diamond P := \neg P \implies P.$
- $\bullet \ \Box P := \neg \diamond \neg P.$

This gives us the following veracities:

- $v(\diamond P) = v(\neg P \implies P) = v(P \oplus \neg \neg P) = v(P \oplus P) = \min(1, 2v(P)),$
- $v(\Box P) = v(\neg \diamond \neg P) = v(\neg (P \implies \neg P)) = v(\neg (\neg P \oplus \neg P)) = v(P \otimes P) = \max(0, 2v(P) 1).$
- $v(\delta(P)) = v(P \iff \neg P) = 1 |v(P) + 1 v(P)| = 0.$

Originally, Łukasiewicz logic was built from the constant F and the operation \implies , with all other constants and operations following:

- $\bullet \neg P := P \implies F$
- $\bullet P \lor Q := (P \implies Q) \implies Q$
- $P \wedge Q := \neg(\neg P \vee \neg Q)$
- $P \iff Q := (P \implies Q) \land (Q \implies P)$ (something is wrong here; this is supposed to be strong disjunction?)
- \bullet $T := F \implies F$
- $\bullet P \oplus Q := \neg P \implies Q$
- $P \otimes Q := \neg (P \implies \neg Q)$