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Consider for example the field F4 = F2[α] where α2 = α + 1. Then the polynomial
x3 + α ∈ F4[x] is irreducible. Then let F64 = F4[β] where β3 = α.

Then we can consider the plane [A,B] with A,B ∈ F64. We can write A = a0+a1β+a2β
2

and B = b0 + b1β + b2β
2 for ai, bi ∈ F4.

The plane [A,B] is the set {(x,Ax+Bx4) : x ∈ F64}. That is, we can choose x = 1, β, β2

to identify three points contained in the plane. For x = 1, we get (1, A+ B) = (1, 0, 0, a0 +
b0, a1 + b1, a2 + b2). For x = β, we get

Ax+Bx4 = Aβ +Bβα = a0β + a1β
2 + a2α + b0βα + b1β

2α + b2α + b2.

So (β,Aβ +Bβ4) corresponds to the point (0, 1, 0, a2α + b2α + b2, a0 + b0α, a1 + b1α).
Finally, for x = β2, we have Aβ2 +Bβ8 = Aβ2 +Bβ2(α + 1).

Aβ2 +Bβ2(α + 1) = a0β
2 + a1α + a2βα + b0β

2(α + 1) + b1 + b2β

and so (β2, Aβ2+Bβ8) corresponds to the point (0, 0, 1, a1α+ b1, a2α+ b2, a0+ b0α+ b0). So

[A,B] = join{(1, 0, 0, a0 + b0, a1 + b1, a2 + b2),

(0, 1, 0, a2α + b2α + b2, a0 + b0α, a1 + b1α),

(0, 0, 1, a1α + b1, a2α + b2, a0 + b0α + b0)}.

In particular, the plane

[A, 0] = join{(1, 0, 0, a0, a1, a2),
(0, 1, 0, a2α, a0, a1),

(0, 0, 1, a1α, a2α, a0)}.

Also define the plane Π∞ = join{(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)}.
I claim that S = {[A, 0] : A ∈ F64} ∪ {Π∞} is a spread of P5

F4
. First note that #P5

F4
=

46 − 1

4− 1
= 1365. And #P2

F4
= 21. And 1365/21 = #S.

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 a0 a1 a2
0 1 0 αa2 a0 a1
0 0 1 αa1 αa2 a0
1 0 0 b0 b1 b2
0 1 0 αb2 b0 b1
0 0 1 αb1 αb2 b0

∣∣∣∣∣∣∣∣∣∣∣∣
= (a0+b0)

3+α(a1+b1)
3+α2(a2+b2)

3+α(a0+b0)(a1+b1)(a2+b2),

which we can rewrite as

X3 + αY 3 + α2Z3 + αXY Z ∈ F4[X, Y, Z].

We want to show the only root in F4 is (X, Y, Z) = (0, 0, 0). Suppose X ̸= 0. Then X3 = 1.
So we have 1 + αY 3 + α2Z3 + αXY Z.
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For the case F2, we can construct a spread via the field extension F8
∼= F2/(x

3 + x + 1)
and defining the planes

[A,B] = join{(1, 0, 0, a0 + b0, a1 + b1, a2 + b2),

(0, 1, 0, a2 + b1, a0 + a2 + b1 + b2, a1 + b0 + b2),

(0, 0, 1, a1 + b1 + b2, a1 + a2 + b0 + b1, a0 + a2 + b0 + b1 + b2)}

for A,B ∈ F8 and the spread comprising

[A, 0] = join{(1, 0, 0, a0, a1, a2),
(0, 1, 0, a2, a0 + a2, a1),

(0, 0, 1, a1, a1 + a2, a0 + a2)}.

Do [0, 0], [1, 0], and Π∞ form a “regulus” in P5
F2
? We have [0, 0] = V (x3, x4, x5), [1, 0] =

V (x0 + x3, x1 + x4, x2 + x5), and Π∞ = V (x0, x1, x2). Is there some quadric 4-dimensional
hypersurface containing all three planes?

The family
I = (x0x4 + x1x3, x0x5 + x2x3, x1x5 + x2x4)

contains all three planes. According to Macaulay2, I is codimension 2 and degree 3, so it
carves out a cubic threefold containing the planes.

I should further study the plane-bearing properties of cubic threefolds in P5
k, for example

V (x0x4 − x1x3, x0x5 − x2x3, x1x5 − x2x4).

I believe this is isomorphic to the Segre embedding

P2 × P1 ↪→ P5

where
(a0, a1, a2), (b0, b1) 7→ (a0b0, a0b1, a1b0, a1b1, a2b0, a2b1).

In this case, we have

V (x0x3 − x1x2, x0x5 − x1x4, x2x5 − x3x4),

but this is isomorphic to the above variety via


1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0

.

We can look in the Grassmannian of planes in P5. Gr(3, 6) is 9-dimensional and embeds in
P19 via Plücker. According to Macaulay2, the degree of the Plücker embedding of Gr(3, 6) ↪→
P19 is 42.

i1: loadPackage "SchurRings"
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i2: S=schurRing(QQ,s,3)

i3: s 1^9

The coefficient of the s3,3,3 is 42. The P2 × P1 is some kind of curve in Gr(3, 6). Is it a
curve of degree 3?

Or maybe... we use the Chow rings. A(P2) ∼= Z[L]/(L3) and A(P1) ∼= Z[P ]/(P 2), and
A(P5) ∼= Z[H]/(H6). So we have the function of rings

Z[H]/(H6) → Z[L]/(L3)⊗ Z[P ]/(P 2)

where A0(P2×P1) is generated by 1⊗1, A1 is generated by L⊗1 and 1⊗P , A2 is generated
by L2 ⊗ 1 and L⊗ P , and A3 is generated by L2 ⊗ P . Identifying ℓ = L⊗ 1 and p = 1⊗ P ,
we have A(P2 × P1) ∼= Z[ℓ, p]/(ℓ3, p2). Then for consistency let’s write h = H and we have

f : Z[h]/(h6) → Z[ℓ, p]/(ℓ3, p2)

where h 7→ aℓ + bp, h2 7→ a2ℓ2 + 2abℓp, h3 7→ 3a2bℓ2p, and h4 7→ 0. We can find a and b
through a few tests: f(h)p = aℓp. The class p represents a general plane P2×{∗} ⊆ P2×P1.
Then ℓp is the class of a line contained in a specific section L× {∗}.

Maybeee... we can construct a specific h whose intersection with the Segre variety is a
P2 × {∗} ∪ P1 × P1. Yeah, take the two classes P2 × {∗},P1 × P1 ⊆ P2 × P1: they meet at
the line P1 × {∗}. The P1 × P1 is contained in a P3 which must necessarily contain the line
P1 × {∗}. Then it is only a matter of including one of the points of P2 × {∗} not shared by
the P1 × P1, and that extra point extends the P3 to a P4, which is the class h. So in fact
f(h) = ℓ+ p, and so h3 = 3ℓ2p, so the degree of the Segre embedding P2 × P1 ↪→ P5 is 3.

Similarly, the degree of the Segre embedding P2 × P2 ↪→ P8 is (ℓ1 + ℓ2)
4 = 6ℓ21ℓ

2
2.

In general, the degree of the Segre embedding Pn × Pm ↪→ PN is
(
n+m
n

)
?
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