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The space of complete conics is the closure of the space

{(C,C∗) ⊆ P5 × P5∗ : C is a smooth conic and C∗ is the dual of C}.

Note that we can consider a conic as a symmetric 3 × 3 matrix A =

 a b/2 c/2
b/2 d e/2
c/2 e/2 f


and derive the polynomial for C from the product

(
x y z

)
A

xy
z

. This is the same as

⟨A(v⃗), v⃗⟩ = 0. When C is smooth, its dual can thus be calculated simply by taking the
inverse A−1 or equivalently by the adjoint adj(A) ∼ A−1 since adj(A) = det(A)A−1.

Let us denote the variety of non-smooth conics in P5 by X and the subvariety of double
lines S. Note X is a degree-3 variety of dimension 4, and S has dimension 2, because S is
the image of the embedding

f : P2 → P5

defined by f(a, b, c) = (a2, 2ab, 2ac, b2, 2bc, c2). Note that X is the image of the 2-to-1 map
g : P2 × P2 → P5 given by g((a, b, c), (d, e, f)) = (ad, ae + bd, af + cd, be, bf + ce, cf). This
map is 2-to-1 because g((a, b, c), (d, e, f)) = g((d, e, f), (a, b, c)). The map g ramifies on the
surface S.

In the space of complete conics, a singular conic C0 does not always uniquely determine
its pair. Rather, when C0 is a double line, the direction of a line containing C0 determines
its dual. Let Ct be a pencil of conics containing C0 at t = 0. Its dual will hence be defined
at C∗

0 := lim
t→0

C∗
t ̸= (C0)

∗, since (C0)
∗ is simply a double point. (When C0 is the union of two

distinct lines ℓ1 + ℓ2, the limit lim
t→0

C∗
t = 2ℓ1ℓ2 always, so C0 has a unique dual.)

We thus have four kinds of complete conics (C,C∗):

1. C is smooth and C∗ is its dual.

2. C is the union of two distinct lines, and C∗ is the double line of the dual of the unique
singularity.

3. C is a double line and C∗ is a double line. (When Ct is linear, C
∗ will be the double

line given by the dual of the unique intersection of Ct with C. This means that the
pencil has a unique base point of multiplicity 4.)

4. C is a double line and C∗ is the union of two distinct lines. (When Ct is linear C
∗ will

be the union of the two dual lines given by the two base points of multiplicity 2 of the
pencil.)

Note Ct may be quadratic and its tangent line within the intersection with S may be con-
tained in X. We will provide some examples.

Example 1. Let C0 be of type two in a pencil with four distinct base points. By the four
point theorem, we can say that C0 = V (xy) and C1 = V (z(x + y + z)). The four base
points are (1, 0, 0), (0, 1, 0), (−1, 0, 1) and (0,−1, 1). Then we can construct a pencil of
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conics uxy + v(xz + yz + z2) where (u, v) ∈ P1. This pencil is described by the matrix A = 0 u/2 v/2
u/2 0 v/2
v/2 v/2 v

, whose inverse is equivalent to

 −v2 v2 − 2uv uv
v2 − 2uv −v2 uv

uv uv −u2

, plugging in

v = 0 we get the conic z2, which indeed is the dual of the point (0, 0, 1). By plugging in
u = 0, we get the conic −x2 + 2xy − y2 = −(x− y)2, which is the dual of the point (1, 1, 0),
which is the singularity of z(x+ y + z).

Example 2. Now let C0 be of type 2 in a linear pencil with one base point of multiplicity
2 and two ordinary base points. We can take C0 = V (xy) and C1 = V (z(x + y)). The two
ordinary base points of the pencil are (1, 0, 0) and (0, 1, 0) and the base point of multiplicity
2 is (0, 0, 1). Then C∗

0 is z2 again, and C∗
1 is (x − y)2, which is dual of (1,−1, 0), which is

the intersection of z and x+ y.

Example 3. Now let C0 be of type 2 in a linear pencil with two base points of multiplicity
2. Take C0 = V (xy) and C1 = V (z2). Then C∗

0 is z2 and C∗
1 is xy.

Example 4. Now let C0 be of type 2 in a linear pencil with one base point of multiplicity
3 and one ordinary base point. We can take C0 = V (xy) and C1 = V (x2 − yz). This has
a base point of multiplicity 3 at (0, 0, 1) and an ordinary base point at (0, 1, 0). Then C∗

0 is
once again z2.

Note that if C0 is type 2, there is no non-trivial linear pencil of conics containing C0 that
has one base point of multiplicity 4: every such pencil would be a line contained in X.

Example 5. Let C0 be a double line in a linear pencil with two base points of multiplicity
2. Then C∗

0 will be a union of two lines. Take C0 = V (y2) and C1 = V (xz), then the
pencil comprises conics of the form uy2 + vxz for (u, v) ∈ P1. This pencil has two base

points (1, 0, 0) and (0, 0, 1). This is described by the matrix A =

 0 0 v/2
0 u 0
v/2 0 0

. Then

A−1 ∼

 0 0 2u
0 v 0
2u 0 0

 so when v = 0 we get the dual of C0 is xz, which is the the union of

the duals of the two base points (1, 0, 0) and (0, 0, 1).

Example 6. Let C0 be a double line in a linear pencil with one base point of multiplicity
4. Then C∗

0 will be a double line. Take C0 = V (y2) and C1 = V (x2 − yz). Then the
pencil comprises conics of the form uy2 + v(x2 − yz), and has one base point of multiplicity

4 at (0, 0, 1). The matrix describing this pencil is A =

v 0 0
0 u −v/2
0 −v/2 0

. Then A−1 ∼v 0 0
0 0 −2v
0 −2v −4u

 so when v = 0 we get the dual of C0 is z2, this is the dual of the base

point (0, 0, 1).
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Example 7. Now let C0 be the double line V (y2) in the quadratic pencil of conics given
by 4u2x2 + v2y2 + 4uvyz. That is, C0 is the fiber u = 0. This pencil has a base point at
(0, 0, 1) of multiplicity 4 and every fiber is tangent to the lines x = z and x = −z. Then the

matrix associated with this pencil is A =

4u2 0 0
0 v2 2uv
0 2uv 0

. Then A−1 ∼

v 0 0
0 0 2u
0 2u −v


and so we get the linear pencil vx2 + 4uyz − vz2. When u = 0 we get the dual of C0 is
x2−z2 = (x+z)(x−z), which is the product of the duals of the points (1, 0, 1) and (−1, 0, 1),
which are the limits of the points of tangency to the lines V (x + z) and V (x − z) in the
pencil as the fibers approach C0.

Note that this example that this complete conic is an example of type 4, even though
the pencil has one base point of multiplicity 4 like in type 3. This is because the pencil is
quadratic and the quadratic curve in P5 has a tangent line at its intersection with S inside
X.

Observe: the quadratic curve cut out by this pencil is given by (4u2, 0, 0, v2, 4uv, 0),
parametrized by (u, v) ∈ P1. This curve sits in the plane V (λ1, λ2, λ5), so we can ignore the
zeroes to simply write (4u2, v2, 4uv). The fiber at u = 0 is the point (0, 1, 0). This curve is
tangent to the line x = 0 at (0, 1, 0), which corresponds to the x2 axis in P5. Therefore the
tangency of 4u2x2 + v2y2 + 4uvyz at y2 ∈ S is the line L along the x2 axis. Other points
on L are conics of the form uy2 + vx2, which is a union of lines (but only a square when
uv = 0). So L ⊆ X.

Another way to think of complete conics: let V be a three-dimensional vector space and
take P5 = P(Sym2V ∗) and P5∗ = P(Sym2V ). Let e1, e2, and e3 generate V : then Sym2V is
generated by e21, e1e2, e1e3, e

2
2, e2e3, and e

2
3, so P(Sym2V ) is indeed five dimensional projective

space.
Let φ : V → V ∗ and ψ : V ∗ → V be symmetric (and therefore determine conics in P2).

The variety Y of complete conics comes from pairs (φ, ψ) such that φ ◦ ψ has its diagonal
entries equal to each other (two equations) and its off-diagonal entries all equal to zero (six
equations) (although really that should be three equations if we are taking φ and ψ to be
symmetric??). So φ ◦ ψ is a scalar multiple of the identity matrix. We get the following
types of complete conics (φ, ψ):

1. If φ has rank 3, then ψ is its inverse.

2. If φ has rank 2, then the products φ ◦ ψ and ψ ◦ φ must both be 0. It follows that ψ
is the unique (up to scalars) symmetric map V ∗ → V whose kernel is the image of φ
and whose image is the kernel of φ.

3. If φ has rank 1, then ψ may have rank 1 or 2; in the latter case, it may be any symmetric
map V ∗ → V whose image is the kernel of φ and whose kernel is the image of φ.

4. If rank φ = rank ψ = 1, then they simply have to satisfy the condition that img φ ⊆
kerψ and img ψ ⊆ kerφ.

We can describe duals of quadrics in general dimension as follows.
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Proposition 8.1. Let Q ⊆ P(V ) = Pn be the quadric corresponding to the symmectric
map φ : V → V ∗, and let v ∈ V be a nonzero vector such that ⟨φ(v), v⟩ = 0, so that v ∈ Q.
The tangent hyperplane to Q at v is

TvQ = {w ∈ P(V ) : ⟨φ(v), w⟩ = 0}

and the dual of Q is thus

Q∗ = {φ(v) ∈ P(V ∗) : v ∈ Q and φ(v) ̸= 0}.

In particular, if Q is nonsingular (that is, if the rank of φis n + 1), then Q∗ is the image
φ(Q) of Q under the induced map φ : PV → PV ∗ and Q∗ is the quadric corresponding to
the cofactor map φc (what I’ve been calling the adjoint).

On the other hand, if the rank ofQ is n andQc is the quadric corresponding to the cofactor
map φc, then Qc is the unique double hyperplane containing Q∗; that is, the support of Qc

is the hyperplane corresponding to the annihilator of the singular point of Q.

Proof. For any w ∈ V , the line vw ⊆ PV spanned by v and w is tangent to Q at v if and
only if

⟨φ(v + εw), v + εw⟩ = 0 mod ε2.

Expanding this out, we get

⟨φ(v), v⟩+ ε⟨φ(v), w⟩+ ε⟨φ(w), v⟩+ ε2⟨φ(w), w⟩

and remembering that ⟨φ(v), v⟩ = 0 and ε2 = 0, we get

⟨φ(w), v⟩+ ⟨φ(v), w⟩ = 0,

and by symmetry of φ and the assumption that we are not in characteristic 2, this is the
case if and only if

⟨φ(v), w⟩ = 0,

proving that first statement and identifying the dual variety as Q∗ = φ(Q). (Remember sym-
metry means ⟨φ(v), w⟩ = ⟨v, φ(w)⟩.) Also remember that the dual of a vector subspace is its
orthogonal complement. Considering the cone CT of TvQ in V , the orthogonal complement
of CT is the linear subspace generated by φ(v), since TvQ = {w ∈ P(V ) : ⟨φ(v), w⟩ = 0}.
Thus the image of the tangent hyperplane TvQ under the dualization map is the point φ(v).
Doing this for all the points, we get the equality Q∗ = φ(Q).

Suppose the rank of Q is n or n + 1. Let φc be the matrix of cofactors of φ, so that
φc ◦ φ = detφ ◦ I (this is what I’ve been calling the adjoint). Since rank Q = rank φ ≥ n,
the map φc is nonzero. The quadric Qc is by definition the set of all w ∈ V ∗ such that
⟨w,φc(w)⟩ = 0. If v ∈ Q then

⟨φ(v), φcφ(v)⟩ = det(φ)⟨φ(v), v⟩ = 0,

so φ(Q) is contained in Qc.
If rank φ = n + 1, so that φ is an isomorphism, then Q∗ = φ(Q) is again a quadric

hypersurface and we must have Q∗ = Qc. If rank φ = n, then since φcφ = 0 the rank of φc

is 1, and the associated quadric is a double hyperplane. On the other hand, Q is the cone
over a nonsingular quadric in Pn−1, and Q∗ is the dual of that quadric inside a hyperplane
(corresponding to the vertex of Q) in Pn∗. Thus Q∗ spans the plane contained in Qc.
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Corollary 8.2. If Q and Q′ are smooth quadrics, then Q and Q′ have the same tangent
hyperplane ℓ = 0 at some point of intersection v ∈ Q∩Q′ if and only if Q∗ and Q′∗ have the
common tangent hyperplane v∗ = 0 at the point of intersection ℓ∗ ∈ Q∗ ∩Q′∗.

To solve the five conic problem, we will need to address these four issues:

• We have to show that in passing from the “naive” compactification P5 of the space U of
smooth conics to the more sensitive compactification Y , we have in fact eliminated the
problem of extraneous intersection; in other words, we have to show that for five general
conics Ci the corresponding divisors ZCi

⊆ Y intersect only in points (C,C ′) ∈ Y with
C and C ′ = C∗ smooth.

• We have to show that the five divisors ZCi
are transverse at each point where they

intersect.

• We have to determine the Chow ring of the space Y , or at least the structore of a
subring of A(Y ) containing the class ζ of the hypersurfaces ZCi

we wish to intersect.

• We have to identify the class ζ in this ring and find the degree of the fifth power
ζ5 ∈ A5(X).

We will start by showing that no complete conic (C,C ′) of type 2 lies in the intersection of
the divisors associated to five general conics. The first thing we need to do is to describe
the points (C,C ′) of type 2 lying in ZD for a smooth conic D. This is straightforward: if
C = L ∪M is a conic of rank 2 which is a limit of smooth conic tangent to D, then C must
also have a point of intersection multiplicity 2 or more with D. (Note that by symmetry a
similar description holds for the points of type 3: the complete conic (2L, p∗ + q∗) will lie on
ZD only if L is tangent to D, or p or q lie on D.)

Now suppose that (C,C ′) is a complete conic of type 2 lying in the intersection of the
divisors Zi = ZCi

associated to five general conics Ci. Write C = L∪M and set p = L∩M .
We note that since the Ci are general, no three are concurrent; thus p can lie on at most two
of the conics Ci. We will proceed by considering three cases in turn:

• p lies on line of the conics Ci. This is the most immediate case: Since the conics C∗
i

are also general, it is like wise the case that no three of them are concurrent. In other
words, no line in the plane is tangent to more than two of the Ci and correspondingly
(L ∪M, p) ∈ ZCi

for at most four of the Ci.

• p lies on two of the conics Ci, say C1 and C2. Since C3, C4, and C5 are general with
respect to C1 and C2, none of the finitely many lines tangent to two of them passes
through a point of C1 ∩ C2; thus L and M can each be tangent to at most one of the
conics C3, C4, and C5, and again we see that (L ∪M, 2p∗) ∈ ZCi

for at most four of
the conics Ci.

• p lies on exactly one of the conics, say C1. Now since C1 is general with respect to the
other four, it will not contain any of the finitely many points of pairwise intersection
of lines tangent to two of them. Thus L and M cannot each be tangent to two of the
other four conics and once more we see that (L∪M, 2p∗) ∈ ZCi

for at most four of the
Ci.
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Thus no conic of type 2 can lie in the intersection of the ZCi
; by symmetry, no complete

conic of type 3 can either.
It remains to verify that no complete conic (C,C ′) of type 4 can lie in the intersection⋂
Zi and again we have to start by characterizing the intersection of a cycle Z = ZD with

the locus of complete conics of type 4.
To do this, write an arbitrary complete conic of type 4 as (2M, 2q∗) with q ∈ M . If

(2M, 2q∗) ∈ ZD, then there is a one parameter family (Ct, C
′
t) ∈ ZD with Ct smooth, C ′

t = C∗
t

for t ̸= 0 and (C0, C
′
0) = (2M, 2q∗); let pt ∈ Ct ∩D be the point of tangency of Ct with D,

and set p = limt→0 pt ∈M . The tangent line TptCt = TptD to Ct at pt will have as limit the
tangent line L to D at p, so L∗ ∈ q∗. Thus both p and q are in both L and M . If p = q
then in particular q ∈ D. On the other hand, if p ̸= q, then we must have M = pq = L, so
M∗ ∈ D∗. We conclude therefore, that a complete conic (2M, 2q∗) of type 4 can lie in ZD

only if either q ∈ D or M∗ ∈ D∗.
Given this, we see that the first conidtion (q ∈ Ci) can be satisfied for at most two of the

Ci, and the latter (M∗ ∈ C∗
i ) likewise for at most two; thus no complete conic (2M, 2q∗) of

type 4 can lie in ZCi
for all i.

Now on to transversality. In order to prove that the cycles ZCi
⊆ Y intersect transversely

when the conics C1, . . . , C5 are general, we need a description of the tangent spaces to the
ZCi

at points of
⋂
Zi. We have just shown that such points are represented by smooth conics,

and the open subscheme parametrizing smooth conics is the same whether we are working
in P5 or in Y , so we may express the answer in terms of the geometry of P5.

Lemma 8.5. Let D ⊆ P2 be a smooth conic curve and Z◦
D ⊆ P5 the variety of smooth

plane conics C tangent to D.

(a) If C has a point p of simple tangency with D and is otherwise transverse to D, then
Z◦

D is smooth at [C].

(b) In this case, the projective tangent plane T[C]Z
◦
D to Z◦

D at [C] is the hyperplaneHp ⊆ P5

of conics containing p.

Proof. First, identify D with P1 and consider the restriction map

H0(OP2(2)) → H0(OD(2)) = H0(OP1(4)).

This map is surjective, with kernel the one-dimensional subspace spanned by the section
representing D itself. Interms of projective spaces, the restriction induces a rational map

πD : P5 = PH0(OP2(2)) → PH0(OP1(4)) = P4

(this is just the linear projection of P5 from the point D ∈ P5 to P4). The closure Z◦
D in P5

is thus the cone with vertex D ∈ P5 over the hypersurface D ⊆ P4 of singular divisors in the
linear system |OP1(4)| (the singular divisors correspond to points of tangency); Lemma 8.5
will follow directly from the next result.

Proposition 8.6. Let Pd = PH0(OP1(d)) be the space of polynomials of degree d on P1

and D ⊆ Pd the discriminant hypersurface; that is, the locus of polynomials with a repeated
root. If F ∈ D is a point corresponding to a polynomial with exactly one double root p
and d− 2 simple roots, then D is smooth at F with tangent space the space of polynomials
vanishing at p.
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Proof. Let us introduce the incidence correspondence

Ψ = {(F, p) ∈ Pd × P1 : ordp(F ) ≥ 2},

and write down its equations in local coordinates (a, x) ∈ Pd ×P1. Ψ is the zero locus of the
polynomials

R(a, x)− adx
d + ad−1x

d−1 + · · ·+ a1x+ a0

and
S(a, x) = dadx

d−1 + (d− 1)ad−1x
d−2 + · · ·+ 2a2x+ a1.

Evaluated at a general point (a, x) where a1 = a0 = x = 0, all the partial derivatives of R
and S vanish except ( ∂R

∂a1
∂R
∂a0

∂R
∂x

∂S
∂a1

∂S
∂a0

∂S
∂x

)
=

(
0 1 0
1 0 2a2

)
.

The fact that the first 2 × 2 minor is nonzero assures us that Ψ is smooth at the point,
and the fact that a2 ̸= 0 and the characteristic is not 2 assures us that the differential
dπ : T(a,0)Ψ → TaPd of the projection D → Pd is injective, with the image the plane a0 = 0.
(Remember a0 = 0 is the minimum condition for a vanishing at x = 0.) Finally, the fact
that π is one-to-one at such a point tells us the image D = π(Ψ) is smooth at the image
point.

So Ψ is like a D-fibration? Ψ|x=anything is a D. In other words, the fibers of the map Ψ → P1

given by (a, x) = x are all isomorphic to D. I think π is supposed to be Ψ → Pd given by
(a, x) 7→ a. Look up differential geometry notes?

Getting back to the statement of Lemma 8.5, if C ⊆ P5 is a conic with a point p of simply
tangency with D and is otherise transverse to D, then by Proposition 8.6 D is smooth at
the image point in P4, with tangent space the space of polynomials vanishing at p. Since ZD

is the cone over D it follows that ZD is smooth at C; the tangent space statement follows as
well.

In order to apply Lemma 8.5 we need to establish some more facts about a conic tangent to
five general conics.

Lemma 8.7. Let C1, . . . C5 ⊆ P2 be general conics and C ⊆ P2 any smooth conic tangent
to all five. Each conic Ci is simply tangent to C at a point pi and is otherwise transverse to
C, and the points pi ∈ C are distinct.

Proof. Let U be the set of smooth conics, and consider incidence correspondences

Φ = {(C1, . . . , C5;C) ∈ U5 × U : each Ci is tangent to C}
⊆ Φ′ = {(C1, . . . , C5 : C) ∈ (P5)5 × U : each Ci is tangent to C}.

The set Φ is an open subset of Φ′. Since U is irreducible of dimension 5 and the projection
map Φ′ → U on the last factor has irreducible fibers (ZC)

5 of dimension 20, we see that Φ′–
and thus also Φ– is irreducible of dimension 25. There are certainly points in Φ where the
conditions of the lemma are satisfied: simply choose a conic C and five general conics Ci

tangent to it. Thus the set of (C1, . . . , C5;C) ∈ Φ where the conditions of the lemma are
not satisfied is a proper closed subset, and as such it can have dimension at most 24, and
cannot dominate U5 under the projection to the first factor. This proves the lemma.
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To complete the argument for transversality, let [C] ∈
⋂
Zi be a point corresponding to the

conic C ⊆ P2. By Lemma 8.7 the points pi of tangency of C with the Ci are distinct points
on C. Since C is the unique conic through these five points, the intersectino of the tangent
spaces to Zi at [C] ⋂

T[C]Zi =
⋂

Hpi = {[C]}
is zero-dimensional, proving transversality.

Now onto the Chow ring of Y . Having confirmed that the intersection
⋂
Zi indeed

behaves well, let us turn now to computing the intersection number. We start by describing
the relevant subgroup of the Chow group A(Y ).

First, let α, β ∈ A1(Y ) be the pullbacks to Y ⊆ P5 × P5∗ of the hyperplane classes on P5

and P5∗. These are respectively represented by the divisors

Ap = {(C,C∗) : p ∈ C}

(for any point p ∈ P2) and
BL = {(C,C∗) : L ∈ C∗}

(for any point L ∈ P2∗).
Also, let γ, φ ∈ A4(Y ) be the classes of the curves Γ and Φ that are the pullbacks to Y of

general lines in P5 and P5∗. These are, respectively, the classes of the loci of complete conics
(C,C∗) such that C contains four general points in the plane, and such that C∗ contains
four points Li ∈ P2∗ (that is, C is tangent to four lines in P2).

Lemma 8.8. The group A1(X) of divisor classes on X has rank 2, and is generated over
the rationals by α and β. The intersection number of these classes with γ and φ are given
by the table.

× α β
γ 1 2
φ 2 1

Proof. We first show that the rank of A1(Y ) is at most 2. The open subset U ⊆ Y of pairs
(C,C∗) with C and C∗ smooth is isomorphic to the complement of a hypersurface in P5,
and hence has torsion Picard group: Any line bundle on U extends to a line bundle on P5,
a power of which is represented by a divisor supported on the complement P5 \ U . Thus, if
L is any line bundle on Y , a power of L is trivial on U and so is represented by a divisor
supported on the complement Y \ U . But the complement in X has just two irreducible
components: the closures D2 and D3 of the loci of complete conics of type 2 and 3. Any
divisor class on X is thus a rational linear combination of the classes D2 and D3, from which
we see that the rank of the Picard group of Y is at most 2.

Since passing through a point is one linear condition on a quadric, we have deg(αγ) = 1
and dually deg(βφ) = 1. Similarly, since a gneral pencil of conics will cut out on a line
L ⊆ P2 a pencil of degree 2, which will have two branch points, we see that deg(αφ) = 2
(meaning: we can use C(u,v) in the pencil to map a pair of points in L ∼= P1 to (u, v) ∈ P1

corresponding to C(u,v) ∩ L giving a degree-2 map P1 → P1 and using Hurwitz we get two
branch points). Again by duality deg(βγ) = 2. Since the matrix of intersections between
α, β and γ, φ is nonsingular, we conclude that α and β generate Pic(Y )⊗Q.
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In fact, α and β generate A1(Y ) over Z as well, as we could see from the description of Y as
a blow up of P5.

It follows from Lemma 8.8 that we can write ζ = pα+qβ ∈ A1(X)⊗Q for some p, q ∈ Q.
to compute p and q, we use the fact that, restricted to the open set U ⊆ Y , the divisor Z
is a sextic hypersurface; it follows that deg(ζγ) = p + 2q = 6 (γ is a line), and since ζ is a
symmetric in α and β as well deg(ζφ) = q + 2p = 6 as well. Thus

ζ = 2α + 2β ∈ A1(Y )⊗Q.

From this we see that deg(ζ5) = 32 deg(α+ β)5, and it suffices to evaluate the degree of the
class α5−iβi ∈ A5(X) for i = 0, . . . , 5. By symmetry, it is enough to do this for i = 0, 1 and
2.

To do this, observe first that the projection of X ⊆ P5 × P5∗ onto the first factor is an
isomorphism on the set U1 of pairs (C,C

′) such that rank C ≥ 2 (the map U → P5∗ sending a
smooth conic C to its dual in fact extends to a regular map on U1 sending a conic C = L∪M
of rank 2 to the double line 2p∗ ∈ P5, where p = L ∩M). Since all conics passing through
three given general points have rank ≥ 2, the intersections needed will occur only in U1.
since the degree of a zero-dimensional intersection is equal to the degree of the intersection
scheme, this implies that we can make the computations on P5 instead of Y . For this we use
Bèzout’s theorem:

• i = 0: Passing through a point is a linear condition of quadrics. There is a unique
quadric passing through five general points, and the intersection of five hyperplanes in
P5 has degree 1, so deg(α5) = 1.

• i = 1: The quadrics tangent to a given line form a quadric hypersurface in P5 (that
is, a general pencil of conics in P2 will have to fibers tangent to a given line L, but
Hurwitz). Since not all conics in the one-dimensional linear space of conics through
four general points will be tangent to a general line, deg(α4β) = 2.

• i = 2: Similarly, we see that the conics passing through three given general points and
tangent to a general line form a conic curve U1 ⊆ P5. (That is, β is the class of the same
quadric hypersurface from previous and α3 is a plane in P5, so their intersection is a
plane conic in P5.) Not all these conics are tangent to another given general line. (For
example, after fixing coordinates we may this of circles as the conics passing through
the points (±i, 1, 0). Certainly there are circles through a given point and tangent to
a given line that are not tangent to another given line.) It follows that deg(α3β2) is
the degree of the zero-dimensional intersection of a plane with two quadrics, that is, 4.
Meaning for L,M lines in P2, α3βL is a plane conic and α3βM is a conic in the same
plane α3, and so they intersect at 4 points.

Thus

deg((α + β)5) =

(
5

0

)
+

(
5

1

)
· 2 +

(
5

2

)
· 4 +

(
5

3

)
· 4 +

(
5

4

)
· 2 +

(
5

5

)
= 1 + 10 + 40 + 40 + 10 + 1 = 102
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and correspondingly
ζ5 = 25 · 102 = 3264.

This proves that there are 3264 plane conics tangent to five general plane conics.

Section 13.3.5 gives an alternative proof of the five conics problem using excess intersec-
tion formula.

In 9.7 they do the plane conics in P3 meeting 8 lines. Kind of like how fibrations generalize
products, do bundles generalize fibrations? I think bundles are the domains of fibrations
actually...

Anyway here is my incorrect attempt at enumerating the plane conics in P3 that intersect
8 general lines.

First thing I did was take our space of plane conics in P3 to be X = P3∗ × P5. This was
the mistake: its actually a P5-fibration over P3∗, not a literal product.

Then I determined the Chow ring A(X) = Z[α, β]/(α4, β6) where α is the pullback of a
plane in P3 and β is the pullback of a hyperplane in P5. I wanted to determine ζ = pα+qβ ∈
A1(X) the class of all plane conics through a given line L and find deg(ζ8). To this effect, I
wanted to find the degree of ζ in each component: P3 and P5. That is, what is deg(ζα2β5)
and deg(ζα3β4)? Note α2β5 is a line in the P3∗ (so it represents a pencil of planes with a
“fixed” conic) and α3β4 is a line in the P5 (so it represents a pencil of conics in a fixed plane).

I calculated that deg(ζα3β4) = 1 because a general pencil of conics will have one fibre
containing a general point (the general point where is the intersection of the general line L
with the fixed plane).

I then calculated that deg(ζα2β4) = 2 because the intersection of L with a general pencil
of planes will trace out a line in a plane containing the fixed conic C, which will intersect C
at two points.

From this we see that ζ = 2α + β. (THIS PART WAS RIGHT!!) Now we can calculate

ζ8 = (2α + β)8

= 256α8 +

(
8

1

)
128α7β +

(
8

2

)
64α6β2 +

(
8

3

)
32α5β3

+

(
8

4

)
16α2β6 +

(
8

5

)
8α3β5 +

(
8

6

)
4α2β6 +

(
8

7

)
2αβ7 + β8

=

(
8

5

)
8α3β5 = 448α3β5

and so deg(ζ8) = 448. This is wrong because X is wrong and so I’m using the wrong Chow
ring A.

Apparently the correct thing to do involves taking G = PGr(2, 3) = P3∗ and looking

that the “tautological bundle” S = OG(−1) and then X = Sym2(S∗)(
?
= Sym2(OG(1))) is

the bundle over G whose fiber over each point is the family of conics in the plane associated
to point.
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