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This will provide an explanation behind these Desmos demonstrations:
https://www.desmos.com/calculator/j7sw3ezr2h and
https://www.desmos.com/calculator/nkdgbhhyke.

First we have five points P1, . . . , P5. Let Pi = (ai, bi, ci) for 1 ≤ i ≤ 5. First we will find
an automorphism of the plane A : P2 → P2 such that

A(P1) = (1, 0, 0),

A(P2) = (0, 1, 0),

A(P3) = (0, 0, 1),

and A(P4) = (1, 1, 1).

My first step of this was to find a matrix that would just do the first three things. I got

M =

(b2c3 − b3c2) (a3c2 − a2c3) (a2b3 − a3b2)
(b1c3 − b3c1) (a3c1 − a1c3) (a1b3 − a3b1)
(b1c2 − b2c1) (a2c1 − a1c2) (a1b2 − a2b1)

 .

To get a function that also sends P4 to (1, 1, 1), let us first define the functions

L23(x, y, z) = (b2c3 − b3c2)x+ (a3c2 − a2c3)y + (a2b3 − a3b2)z,
L13(x, y, z) = (b1c3 − b3c1)x+ (a3c1 − a1c3)y + (a1b3 − a3b1)z,
L12(x, y, z) = (b1c2 − b2c1)x+ (a2c1 − a1c2)y + (a1b2 − a2b1)z.

In other words,
M(x, y, z) = (L23(x, y, z), L13(x, y, z), L12(x, y, z)).

Then define f = 1/L23(P4), g = 1/L13(P4), and h = 1/L12(P4). Then

A =

(b2c3 − b3c2)f (a3c2 − a2c3)f (a2b3 − a3b2)f
(b1c3 − b3c1)g (a3c1 − a1c3)g (a1b3 − a3b1)g
(b1c2 − b2c1)h (a2c1 − a1c2)h (a1b2 − a2b1)h

 .

Then A(P5) = (L23(P5)f, L13(P5)g, L12(P5)h). Now we will apply the quadratic transforma-
tion with base points at (1, 0, 0), (0, 1, 0), and (0, 0, 1) (also called the Cremona transforma-
tion) ϕ : P2 99K P2 given by ϕ(a, b, c) = (bc, ac, ab). Then ϕ preserves (1, 1, 1) and ϕ sends
A(P5) to

ϕ(A(P5)) = (L13(P5)L12(P5)gh, L23(P5)L12(P5)fh, L23(P5)L13(P5)fg) .

Define

Q1 = L23(P5)L12(P5)fh− L23(P5)L13(P5)fg

Q2 = L23(P5)L13(P5)fg − L13(P5)L12(P5)gh

Q3 = L13(P5)L12(P5)gh− L23(P5)L12(P5)fh.
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Then the line connecting (1, 1, 1) and ϕ(A(P5)) is given by the polynomial Q1x+Q2y+Q3z.
After applying ϕ again, we get a conic Q1yz+Q2xz+Q3xy that goes through ϕ(ϕ(A(P5))) =
P5, (1, 1, 1), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Now all we need to do is apply A−1 to this conic
and we get

Q1L13(x, y, z)gL12(x, y, z)h+Q2L23(x, y, z)fL12(x, y, z)h+Q3L23(x, y, z)fL13(x, y, z)g.

This is the conic that goes through P1, . . . , P5.
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Now suppose we have four points P1, . . . , P4 and a line T . We will show how to construct
the two conics that go through the four points and is tangent to T .

First let us first determine how to find the points on a conic C whose line connecting to
(1, 1, 1) is tangent to C. Let C be given by the expression qx2+rxy+sxz+ty2+uyz+vz2

and let P = (a, b, c) ∈ C. Then the line tangent to C at P is given by

(2qa+ rb+ sc)x+ (ra+ 2tb+ uc)y + (sa+ ub+ 2vc)z.

For (1, 1, 1) to be on this line, (a, b, c) must satisfy

(2q + r + s)a+ (r + 2t+ u)b+ (s+ u+ 2v)c = αa+ βb+ γc = 0.

In other words, P must be where the line L = αx + βy + γz intersects C. There are
at most 2 such points. Let

δ = qγ2 − sαγ + vα2,

ε = rγ2 − sβγ − uαγ + 2vαβ,

ψ = tγ2 − uβγ + vβ2.

The the intersection with the line L and the conic C occur at the solutions to δx2 +
εxy+ψy2. These solutions are (−ε±

√
ε2 − 4δψ, 2δ). To be on the line L = αx+βy+γz,

we get z =
−α(−ε±

√
ε2 − 4δψ)− β(2δ)

γ
. Thus our points are

(
−γε± γ

√
ε2 − 4δψ, 2γδ,−α

(
−ε±

√
ε2 − 4δψ

)
− 2βδ

)
.

Now let T = ax+ by + cz. Note

A−1 =

−a1/f a2/g −a3/h
−b1/f b2/g −b3/h
−c1/f c2/g −c3/h

 .

Then

A(T ) = a

(
−a1
f
x+

a2
g
y − a3

h
z

)
+ b

(
−b1
f
x+

b2
g
y − b3

h
z

)
+ c

(
−c1
f
x+

c2
g
y − c3

h
z

)
.

Then

ϕ(A(T )) = a

(
−a1
f
yz +

a2
g
xz − a3

h
xy

)
+b

(
−b1
f
yz +

b2
g
xz − b3

h
xy

)
+c

(
−c1
f
yz +

c2
g
xz − c3

h
xy

)
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and so

q = 0

r = −aa3
h
− bb3

h
− cc3

h

s =
aa2
g

+
bb2
g

+
cc2
g

t = 0

u = −aa1
f
− bb1

f
− cc1

f

v = 0.

Therefore

α = r + s

β = r + u

γ = s+ u

δ = −sαγ
ε = rγ2 − sβγ − uαγ
ψ = −uβγ.

With these equalities in mind, define

η1 = −γε+ γ
√
ε2 − 4δψ

η2 = −γε− γ
√
ε2 − 4δψ

ζ = 2γδ

µ1 = −α
(
−ε+

√
ε2 − 4δψ

)
− 2βδ

µ2 = −α
(
−ε−

√
ε2 − 4δψ

)
− 2βδ

and so

Φ1 =
(
−γε+ γ

√
ε2 − 4δψ, 2γδ,−α

(
−ε+

√
ε2 − 4δψ

)
− 2βδ

)
= (η1, ζ, µ1)

Φ2 =
(
−γε− γ

√
ε2 − 4δψ, 2γδ,−α

(
−ε−

√
ε2 − 4δψ

)
− 2βδ

)
= (η2, ζ, µ2).

Now we must connect Φ1 and Φ2 to (1, 1, 1) with the lines

L1 = (ζ − µ1)x+ (µ1 − η1)y + (η1 − ζ)z

L2 = (ζ − µ2)x+ (µ2 − η2)y + (η2 − ζ)z.

Now we must apply the quadratic transformation ϕ to these lines to get

ϕ(L1) = (ζ − µ1)yz + (µ1 − η1)xz + (η1 − ζ)xy

ϕ(L2) = (ζ − µ2)yz + (µ2 − η2)xz + (η2 − ζ)xy.
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These are conics that contain (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1) and are tangent to A(T ).
Let us write

R1 = ζ − µ1

R2 = µ1 − η1
R3 = η1 − ζ
S1 = ζ − µ2

S2 = µ2 − η2
S3 = η2 − ζ.

Now we must apply A−1 to ϕ(L1) and ϕ(L2) to get

C1 = R1L13(x, y, z)gL12(x, y, z)h+R2L23(x, y, z)fL12(x, y, z)h+R3L23(x, y, z)fL13(x, y, z)g

C2 = S1L13(x, y, z)gL12(x, y, z)h+ S2L23(x, y, z)fL12(x, y, z)h+ S3L23(x, y, z)fL13(x, y, z)g.

These are the two conics that go through points P1, . . . , P4 and are tangent to the line T .
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