Jake Kettinger Weierstrass Points April 2020

Let X be a curve of genus g > 2 and let K be the canonical divisor on X. A gap number
for a point p € X is a number n > 0 such that ¢(K — np) # {(K — (n — 1)p). By Riemann-
Roch, this holds if and only if ¢(np) = ¢((n — 1)p). Denote the sequence of gap numbers for
apoint p € X as G,(K) = {1 =mn3 <ng <--- <ny}. We shall show that a = g.

By Riemann-Roch, we know that ¢(np) =n—g+1forn > 2g—1. Thus £((2g—1)p) =g
and the dimension increases by 1 for each subsequent increment. Therefore for the first 2g —2
entries of the ¢(np) sequence, there will be g — 1 spots where the dimension increases by 1,
and g — 1 spots where the dimension does not increase. Thus for each point p € X, we know
#G, = g, as 1 is always the first gap number of any point.

A point p € X is a Weierstrass point of X if its gap sequence is anything other than
{1,2,...,g}. In other words, if ¢(gp) > 1 or £(K — gp) > 0. The weight of a point is given
by

g
wy(K) = Z(”z — i)
i=1
where n; is the i™" member of the gap sequence G,(K). It is easy to check that the weight
of a non-Weierstrass point is 0.

Miranda proves in Theorem 4.15 that if Q) is a g, and w,(Q) is defined similarly using
the gap numbers n; such that £(Q — n;p) # ((Q — (n; — 1)p), then

> w,(Q) = (r +1)(d+rg —7).

peX

Since K is a ggng, we have that the weights of the Weierstrass points add up to g(g? — 1).
Thus there are finitely many Weierstrass points.

Note that the set of non-gap numbers N\ G, (K') forms a semigroup under addition. If n, m
are two non-gap numbers, then ¢(np) > ¢((n—1)p) and ¢(mp) > ¢((m—1)p) and so there are
meromorphic functions f and g having poles at p of order n and m respectively, and no poles
anywhere else. Then fg is a meromorphic function with a pole of order n +m at p and no
poles anywhere else. Thus fg € L((n+m)p)\L((n+m—1)p) so {((n+m)p) > £((n+m—1)p)
thus n + m is a non-gap number of p.

Next we shall show that there is an upper bound on the weight of a Weierstrass point of
g(g — 1)/2, which is only attained if X is hyperelliptic. We shall follow the proof provided
by Shor and Shaska Wezierstrass points of superelliptic curves.

We shall begin by looking at the non-gap sequence N,(K) in {1,2,...,2¢}. That is,
Ny(K) = [29] \ Gp(K) = {a1,...,a,} where 1 < a1+ < ay =2g. Then for all 1 < j < g,

we will show a;; + ay—; > 2g.

Suppose there is a j < g such that a; + ay—; < 2¢g. Then for all & < j, we know
ap + oy < 2g. And since N,(K) is contained in a semigroup under addition, we know that

1



Jake Kettinger Weierstrass Points April 2020

ap + oy € Np(K) with a,—; < ap + a4 < ay = 2¢g. Since this holds for all 1 < k < j,
there would be j of these non-gaps. However, only j — 1 non-gaps exists between ay,_; and
ag. This is a contradiction. Thus no such j can exist.

Now we shall show that for all p € X, that w,(K) < g(g — 1)/2, and that equality holds
if and only if X is hyperelliptic. Recall that

g g

w,(K) :Z(ni—z’) :;ni—;i:;i—;ai—Zi

i=1 i=1
29 g 2g9—1 g—1
e IEED S DD
i=g+1 i=1 i=g+1 i=1

since a; = 2¢g. The first sum is 3g(¢g — 1)/2. The second sum is at least (¢ — 1)/2 many
summands of at least 2g, and so 327" ; > g(g—1). Thus w,(K) < 3g(g—1)/2—g(g—1) =
g9(g —1)/2.

The weight is maximized when the «; values are minimized. This occurs when oy = 2 and
(since N,(K) is contained in a semigroup under addition), we get N,(K) = {2,4,6,...,2¢g}.
Thus G,(K) = {1,3,5,...,2g9 — 1}. Thus the sequence {{(np)} looks like

((0p) =1, L(1p) =1, £(2p) =2, ¢(3p) =2, L(4p) =3, L(5p) =3,. ..

or {(np) = |5+ 1]. Thus any meromorphic function with a pole only at p has an even-order
pole at p. This non-constant function in £(2p) corresponds with a degree-2 map from X to
P! sending p (and only p) to co. This corresponds with the hyperelliptic map X — P!, of
which p must be a ramification point. Thus the maximum weight is only achieved when X
is hyperelliptic.

Now recall that the sum of the weights of the Weierstrass points is g(g> — 1) and each
weight is at most g(g — 1)/2, with equality if and only if X is hyperelliptic. Then there are
at least g(¢g> — 1)/(9(g — 1)/2) = 2g + 2 Weierstrass points on X, with equality if and only
if X is hyperelliptic.

Thus if X is not hyperelliptic, there are more than 2g + 2 Weierstrass points. Since
they are determined by the canonical divisor K, any automorphism on X must permute
the Weierstrass points. Furthermore, Corollary 2.10 in Miranda says that any nontrivial
automorphism on a non-hyperelliptic algebraic curve of genus ¢ has at most 2¢ + 2 fixed
points. Since there are more than 2g + 2 Weierstrass points on X, any automorphism that
fixes them all must be the identity. Thus AutX is finite.
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Inflection Point: If () is a nonempty g}, then p € X is an inflection point for the linear
system @ if G,(Q) # {1,2,...,r+ 1}.

@ is a linear system, ) C |D| a complete linear system V' C L(D) is the nonzero vector
space corresponding to Q).

Wronskian: Given functions g, ..., g,+1 of variable z, the Wronskian of g1, ..., g.y1 is
2 r
9(z)  91(2) 9%2;(2) S 9% ;(Z)
92(2)  95(2) gy (2) oo g (2)

W.(g1,...,9-)(z) = det : . : .

: : X S
9r1(2) 0111(2) 9h(2) o gTh()
The Wronskian is holomorphic if each of the g;’s are holomorphic.

Lemma 4.4. If g1,...,9,41 are linearly independent holomorphic functions defined in a
neighborhood of z = 0, then the Wronskian is not identically zero near z = 0.

Corollary 4.5. For a fixed linear system () on an algebraic curve X, there are only a finite
number of inflection points.

Proof. Fix a point p € X; then there is a neighborhood U of p such that for all ¢ € U, we
have D(q) = 0 if ¢ # p. Fix a basis {¢1,...,g-+1} for V. By the above analysis, we have
that ¢ is an inflectino point for @) if and only if the Wronskian is zero at ¢. Since the g;’s are
linearly independent, this Wronskian is not identically zero; and since it is holomorphic, it
has discrete zeros. Hence after shrinking U there will be no inflection points in U \ {p}. O

Definition 4.6. A meromorphic n-fold differential on an open set V' C C is an expression
1 of the form

p= f(z)(dz)",
where f is a meromorphic function on V. We say that u is a meromorphic n-fold differential
in the coordinate z.

Lemma 4.9. Let X be an algebraic curve, and let g1,..., g, be meromorphic functions on
X. Then

WZ(Ql(Z), - ,ge(z))(dz)f(ffl)/Q
defines a meromoprhic ¢(¢ — 1)/2-fold differential on X.

Lemma 4.10. Let X be an algebraic curve, D a divisor on X and let fi,..., f; be meromor-
phic functions in £(D). Then the meromorphic n-fold differential W ( f1,..., f;) has poles
bounded by ¢D:

W(fi,..., f) € LU/ D).

If one changes the basis of V', then the Wronskian changes by the determinant of the chage
of basis matrix, and so the Wronskian is well defined (up to scalar constant) by the linear
system (@ itself, and not by the choice of basis. We will therefore denote it by W (Q) when
convenient; Lemma 4.10 implies that

W(Q) = LU ((r +1)D)
if r =dim Q.



Jake Kettinger Weierstrass Points April 2020

Lemma 4.11. Let X be an algebraic curve, D a divisor on X and K = div(w) a canonical
divisor. Then the multiplication map

¢:L(D+nK)— L™(D)
defined by ((f) = fw" is an isomorphism of vector spaces.

Proof. Since w is a meromorphic 1-form, and f is a meromorphic function, then fw™ is a
meromorphic n-fold differential. Moreover the multiplication map is clearly linear in f, and
is injective.

To show that fw™ has poles bounded by D, fix a point p € X and a local coordinate z
at p, and write w = g(z)dz. Then w" = g(z)"(dz)", so that

ordy(fw") = ord,(f) + nordy(g) = ord,(f) +nk(p) = =D(p)

if f € £(D +nkK); hence we see that ¢ does map L£(D +nkK) to L™ (D).
Finally to see that ¢ is surjective, we note that if u = h(2)(dz)* € L™ (D), and w =
g(z)dz, then f = h/g" is a meromorphic function in £(D+nK), which is defined globally. [

Corollary 4.12. Let X be an algebraic curve and @) a linear system on X with r = dim Q.
Then deg(div(W(Q)) = > cx ord,(W(Q)) = r(r + 1)(g — 1).

Proof. Let n = r(r+1)/2, so that by Lemma 4.10 we have that the Wronskian differential
W(Q) is an element of the space L™ ((r+1)D). Then by Lemma 4.11 there is a meromorphic
1-form w and a meromorphic function f such that W(Q) = fw". Then

Z ord,(W(Q)) = Z ord,( fw")
— 3 ford, (f) + nord, (@)
=n Z ord,(w) (since Z ord,(f) =0)

=n(2g—2)=r(r+1)(g—1)
using the fact that deg(div(w)) = 2¢g — 2. O

Note that by Lemma 4.3, p is an inflection point for |D| if and only if the Wronskian
W, (2P® f .. 2P f, 1) is zero at p. Since

ordy (WL (PP 1, 2POf, 1)) = ord, (zUTVPOWL(f, L o)) Y2 (r1) D (p) +ord, (W(Q))

we have a clean link between the order of vanishing of W,(zP® f; ... 2P®)f, ;) (which
measures inflectionary behavior) and ord, (W (Q)), for which we have a global formula.

Lemma 4.14. If G,(Q) ={n1 <ng <--- <ny41} and {f1,..., fr11} is a basis for V, then

r+1

ord, (W.(2"W f1, . 2P0 f ) =) (ns — ).

=1
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Theorem 4.15. Let X be an algebraic curve of genus g, and let ) be a g}, on X. Then

pr =(r+1)(d+rg—r).

peX

Proof. Choose a basis fi,..., f,11 for the subspace V of L£(D) corresponding to Q). We
compute

pr Zord( L(ZPW g ZPW E ) (4.14)
_Z [(r + 1)D(p) + ord,(W(Q))] (4.13)

=(r+ )d+r(r+1)(g—1):(r+1)(d+rg—r)

using Corollary 4.12. O
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Corollary 2.9. Let X be a nonhyperelliptic curve of genus g.

(a) For a general positive divisor D of degree d < g, dim £(D) = 1 and dim H(D) = g—d,
so that dim |D| =0 and |D| = {D}.

(b) For a general positive divisor D of degree d > g, H'(D) = 0 and dim £(D) =d+1—g,
so that dim |D| =d — g.

Corollary 2.10. Suppose that X is a nonhyperelliptic algebraic curve of genus g. Then
any nontrivial automorphism of X has at most 2g + 2 fixed points.

Proof. By Corollary 2.9, we may choose g + 1 general points p;,...,ps11 on X and find a
meromorphic function f on X with simple poles at each p; and no other poles. If ¢ € AutX
and is not the identity, then ¢ = f — f o ¢ has at most 2g + 2 poles, namely the p;’s and the
o~ 1(p;)’s. Therefore g has at most 2g + 2 zeros also. But any point fixed by o is a zero of
qg. O



