By Riemann-Roch, we know that $\ell(np) = n - g + 1$ for $n \geq 2g - 1$. Thus $\ell((2g - 1)p) = g$ and the dimension increases by 1 for each subsequent increment. Therefore for the first $2g-2$ entries of the $\ell(np)$ sequence, there will be $g - 1$ spots where the dimension increases by 1, and $g-1$ spots where the dimension does not increase. Thus for each point $p \in X$, we know $\#G_p = g$, as 1 is always the first gap number of any point.

A point $p \in X$ is a *Weierstrass point* of X if its gap sequence is anything other than $\{1, 2, \ldots, g\}$. In other words, if $\ell(gp) > 1$ or $\ell(K - gp) > 0$. The weight of a point is given by

$$
w_p(K) = \sum_{i=1}^{g} (n_i - i)
$$

where n_i is the ith member of the gap sequence $G_p(K)$. It is easy to check that the weight of a non-Weierstrass point is 0.

Miranda proves in Theorem 4.15 that if Q is a g_d^r and $w_p(Q)$ is defined similarly using the gap numbers n_i such that $\ell(Q - n_i p) \neq \ell(Q - (n_i - 1)p)$, then

$$
\sum_{p \in X} w_p(Q) = (r+1)(d+rg-r).
$$

Since K is a g_{2a-}^{g-1} $2g-2$, we have that the weights of the Weierstrass points add up to $g(g^2-1)$. Thus there are finitely many Weierstrass points.

Note that the set of non-gap numbers $N\backslash G_p(K)$ forms a semigroup under addition. If n, m are two non-gap numbers, then $\ell(np) > \ell((n-1)p)$ and $\ell(mp) > \ell((m-1)p)$ and so there are meromorphic functions f and q having poles at p of order n and m respectively, and no poles anywhere else. Then fg is a meromorphic function with a pole of order $n + m$ at p and no poles anywhere else. Thus $fg \in \mathcal{L}((n+m)p)\setminus\mathcal{L}((n+m-1)p)$ so $\ell((n+m)p) > \ell((n+m-1)p)$ thus $n + m$ is a non-gap number of p.

Next we shall show that there is an upper bound on the weight of a Weierstrass point of $g(g-1)/2$, which is only attained if X is hyperelliptic. We shall follow the proof provided by Shor and Shaska Weierstrass points of superelliptic curves.

We shall begin by looking at the non-gap sequence $N_p(K)$ in $\{1, 2, \ldots, 2g\}$. That is, $N_p(K) = [2g] \setminus G_p(K) = \{\alpha_1, \ldots, \alpha_g\}$ where $1 < \alpha_1 \cdots < \alpha_g = 2g$. Then for all $1 \leq j < g$, we will show $\alpha_j + \alpha_{g-j} \geq 2g$.

Suppose there is a $j < g$ such that $\alpha_j + \alpha_{g-j} < 2g$. Then for all $k \leq j$, we know $\alpha_k + \alpha_{g-j} < 2g$. And since $N_p(K)$ is contained in a semigroup under addition, we know that

Now we shall show that for all $p \in X$, that $w_p(K) \leq g(g-1)/2$, and that equality holds if and only if X is hyperelliptic. Recall that

 α_q . This is a contradiction. Thus no such j can exist.

$$
w_p(K) = \sum_{i=1}^{g} (n_i - i) = \sum_{i=1}^{g} n_i - \sum_{i=1}^{g} i = \sum_{i=1}^{2g} i - \sum_{i=1}^{g} \alpha_i - \sum_{i=1}^{g} i
$$

$$
= \sum_{i=g+1}^{2g} i - \sum_{i=1}^{g} \alpha_i = \sum_{i=g+1}^{2g-1} i - \sum_{i=1}^{g-1} \alpha_i
$$

since $\alpha_g = 2g$. The first sum is $3g(g-1)/2$. The second sum is at least $(g-1)/2$ many summands of at least 2g, and so $\sum_{i=1}^{g-1} \alpha_i \ge g(g-1)$. Thus $w_p(K) \le 3g(g-1)/2-g(g-1) =$ $g(g-1)/2$.

The weight is maximized when the α_i values are minimized. This occurs when $\alpha_1 = 2$ and (since $N_p(K)$ is contained in a semigroup under addition), we get $N_p(K) = \{2, 4, 6, \ldots, 2g\}.$ Thus $G_p(K) = \{1, 3, 5, \ldots, 2g - 1\}$. Thus the sequence $\{\ell(np)\}\$ looks like

 $\ell(0p) = 1, \; \ell(1p) = 1, \; \ell(2p) = 2, \; \ell(3p) = 2, \; \ell(4p) = 3, \; \ell(5p) = 3, \ldots$

or $\ell(np) = \lfloor \frac{n}{2} + 1 \rfloor$. Thus any meromorphic function with a pole only at p has an even-order pole at p. This non-constant function in $\mathcal{L}(2p)$ corresponds with a degree-2 map from X to \mathbb{P}^1 sending p (and only p) to ∞ . This corresponds with the hyperelliptic map $X \to \mathbb{P}^1$, of which p must be a ramification point. Thus the maximum weight is only achieved when X is hyperelliptic.

Now recall that the sum of the weights of the Weierstrass points is $g(g^2 - 1)$ and each weight is at most $q(q-1)/2$, with equality if and only if X is hyperelliptic. Then there are at least $g(g^2-1)/(g(g-1)/2) = 2g+2$ Weierstrass points on X, with equality if and only if X is hyperelliptic.

Thus if X is not hyperelliptic, there are more than $2g + 2$ Weierstrass points. Since they are determined by the canonical divisor K , any automorphism on X must permute the Weierstrass points. Furthermore, Corollary 2.10 in Miranda says that any nontrivial automorphism on a non-hyperelliptic algebraic curve of genus q has at most $2q + 2$ fixed points. Since there are more than $2g + 2$ Weierstrass points on X, any automorphism that fixes them all must be the identity. Thus $Aut X$ is finite.

Inflection Point: If Q is a nonempty g_d^r , then $p \in X$ is an *inflection point* for the linear system Q if $G_p(Q) \neq \{1, 2, ..., r + 1\}.$

Q is a linear system, $Q \subseteq |D|$ a complete linear system $V \subseteq \mathcal{L}(D)$ is the nonzero vector space corresponding to Q.

Wronskian: Given functions g_1, \ldots, g_{r+1} of variable z, the *Wronskian* of g_1, \ldots, g_{r+1} is

$$
W_z(g_1,\ldots,g_r)(z) = \det \begin{pmatrix} g_1(z) & g_1'(z) & g_1^{(2)}(z) & \cdots & g_1^{(r)}(z) \\ g_2(z) & g_2'(z) & g_2^{(2)}(z) & \cdots & g_2^{(r)}(z) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{r+1}(z) & g_{r+1}'(z) & g_{r+1}^{(2)}(z) & \cdots & g_{r+1}^{(r)}(z) \end{pmatrix}.
$$

The Wronskian is holomorphic if each of the g_i 's are holomorphic.

Lemma 4.4. If g_1, \ldots, g_{r+1} are linearly independent holomorphic functions defined in a neighborhood of $z = 0$, then the Wronskian is not identically zero near $z = 0$.

Corollary 4.5. For a fixed linear system Q on an algebraic curve X , there are only a finite number of inflection points.

Proof. Fix a point $p \in X$; then there is a neighborhood U of p such that for all $q \in U$, we have $D(q) = 0$ if $q \neq p$. Fix a basis $\{q_1, \ldots, q_{r+1}\}\$ for V. By the above analysis, we have that q is an inflectino point for Q if and only if the Wronskian is zero at q. Since the g_i 's are linearly independent, this Wronskian is not identically zero; and since it is holomorphic, it has discrete zeros. Hence after shrinking U there will be no inflection points in $U \setminus \{p\}$. \Box

Definition 4.6. A meromorphic n-fold differential on an open set $V \subseteq \mathbb{C}$ is an expression μ of the form

$$
\mu = f(z)(\mathsf{d}z)^n,
$$

where f is a meromorphic function on V. We say that μ is a meromorphic n-fold differential in the coordinate z.

Lemma 4.9. Let X be an algebraic curve, and let g_1, \ldots, g_ℓ be meromorphic functions on X. Then

 $W_z(g_1(z),\dots,g_\ell(z))(\mathsf{d} z)^{\ell(\ell-1)/2}$

defines a meromoprhic $\ell(\ell - 1)/2$ -fold differential on X.

Lemma 4.10. Let X be an algebraic curve, D a divisor on X and let f_1, \ldots, f_ℓ be meromorphic functions in $\mathcal{L}(D)$. Then the meromorphic *n*-fold differential $W(f_1, \ldots, f_\ell)$ has poles bounded by ℓD :

$$
W(f_1,\ldots,f_\ell)\in\mathcal{L}^{(\ell(\ell-2)/2)}(\ell D).
$$

If one changes the basis of V , then the Wronskian changes by the determinant of the chage of basis matrix, and so the Wronskian is well defined (up to scalar constant) by the linear system Q itself, and not by the choice of basis. We will therefore denote it by $W(Q)$ when convenient; Lemma 4.10 implies that

$$
W(Q) = \mathcal{L}^{(r(r+1)/2)}((r+1)D)
$$

if $r = \dim Q$.

Lemma 4.11. Let X be an algebraic curve, D a divisor on X and $K = \text{div}(\omega)$ a canonical divisor. Then the multiplication map

$$
\zeta : \mathcal{L}(D + nK) \to \mathcal{L}^{(n)}(D)
$$

defined by $\zeta(f) = f\omega^n$ is an isomorphism of vector spaces.

Proof. Since ω is a meromorphic 1-form, and f is a meromorphic function, then $f\omega^n$ is a meromorphic *n*-fold differential. Moreover the multiplication map is clearly linear in f , and is injective.

To show that $f\omega^n$ has poles bounded by D, fix a point $p \in X$ and a local coordinate z at p, and write $\omega = g(z)dz$. Then $\omega^n = g(z)^n (dz)^n$, so that

$$
\mathrm{ord}_p(f\omega^n)=\mathrm{ord}_p(f)+n\mathrm{ord}_p(g)=\mathrm{ord}_p(f)+nK(p)\geq -D(p)
$$

if $f \in \mathcal{L}(D+nK)$; hence we see that ζ does map $\mathcal{L}(D+nK)$ to $\mathcal{L}^{(n)}(D)$.

Finally to see that ζ is surjective, we note that if $\mu = h(z)(dz)^n \in \mathcal{L}^{(n)}(D)$, and $\omega =$ $g(z)dz$, then $f = h/g^n$ is a meromorphic function in $\mathcal{L}(D+nK)$, which is defined globally.

Corollary 4.12. Let X be an algebraic curve and Q a linear system on X with $r = \dim Q$. Then deg(div($W(Q)$) = $\sum_{p \in X} \text{ord}_p(W(Q)) = r(r+1)(g-1)$.

Proof. Let $n = r(r + 1)/2$, so that by Lemma 4.10 we have that the Wronskian differential $W(Q)$ is an element of the space $\mathcal{L}^{(n)}((r+1)D)$. Then by Lemma 4.11 there is a meromorphic 1-form ω and a meromorphic function f such that $W(Q) = f\omega^n$. Then

$$
\sum_{p} \text{ord}_{p}(W(Q)) = \sum_{p} \text{ord}_{p}(f\omega^{n})
$$

$$
= \sum_{p} [\text{ord}_{p}(f) + n \text{ord}_{p}(\omega)]
$$

$$
= n \sum_{p} \text{ord}_{p}(\omega) \text{ (since } \sum_{p} \text{ord}_{p}(f) = 0)
$$

$$
= n(2g - 2) = r(r + 1)(g - 1)
$$

using the fact that $\deg(\text{div}(\omega)) = 2g - 2$.

Note that by Lemma 4.3, p is an inflection point for $|D|$ if and only if the Wronskian $W_z(z^{D(p)}f_1,\ldots,z^{D(p)}f_{r+1})$ is zero at p. Since

$$
\operatorname{ord}_p(W_z(z^{D(p)}f_1,\ldots,z^{D(p)}f_{r+1})) = \operatorname{ord}_p(z^{(r+1)D(p)}W_z(f_1,\ldots,f_{r+1})) \stackrel{(4.13)}{=} (r+1)D(p) + \operatorname{ord}_p(W(Q))
$$

we have a clean link between the order of vanishing of $W_z(z^{D(p)}f_1,\ldots,z^{D(p)}f_{r+1})$ (which measures inflectionary behavior) and $\text{ord}_p(W(Q))$, for which we have a global formula.

Lemma 4.14. If $G_p(Q) = \{n_1 < n_2 < \cdots < n_{r+1}\}\$ and $\{f_1, \ldots, f_{r+1}\}\$ is a basis for V, then

$$
\mathrm{ord}_p(W_z(z^{D(p)}f_1,\ldots,z^{D(p)}f_{r+1}))=\sum_{i=1}^{r+1}(n_i-i).
$$

 \Box

$$
\sum_{p \in X} w_p(Q) = (r+1)(d+rg-r).
$$

Proof. Choose a basis f_1, \ldots, f_{r+1} for the subspace V of $\mathcal{L}(D)$ corresponding to Q. We compute

$$
\sum_{p} w_{p}(Q) = \sum_{p} \text{ord}_{p}(W_{z}(z^{D(p)}f_{1}, \dots, z^{D(p)}f_{r+1})) \tag{4.14}
$$
\n
$$
= \sum_{p} [(r+1)D(p) + \text{ord}_{p}(W(Q))] \tag{4.13}
$$
\n
$$
= (r+1)d + r(r+1)(g-1) = (r+1)(d+rg-r)
$$

using Corollary 4.12.

Corollary 2.9. Let X be a nonhyperelliptic curve of genus q.

- (a) For a general positive divisor D of degree $d \leq g$, dim $\mathcal{L}(D) = 1$ and dim $H^1(D) = g d$, so that dim $|D| = 0$ and $|D| = \{D\}.$
- (b) For a general positive divisor D of degree $d \geq g$, $H^1(D) = 0$ and dim $\mathcal{L}(D) = d + 1 g$, so that dim $|D| = d - g$.

Corollary 2.10. Suppose that X is a nonhyperelliptic algebraic curve of genus q . Then any nontrivial automorphism of X has at most $2g + 2$ fixed points.

Proof. By Corollary 2.9, we may choose $g + 1$ general points p_1, \ldots, p_{g+1} on X and find a meromorphic function f on X with simple poles at each p_i and no other poles. If $\sigma \in \text{Aut}X$ and is not the identity, then $g = f - f \circ \sigma$ has at most $2g + 2$ poles, namely the p_i 's and the $\sigma^{-1}(p_i)$'s. Therefore g has at most $2g + 2$ zeros also. But any point fixed by σ is a zero of \Box g .