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Let X be a curve of genus g ≥ 2 and let K be the canonical divisor on X. A gap number
for a point p ∈ X is a number n ≥ 0 such that `(K − np) 6= `(K − (n− 1)p). By Riemann-
Roch, this holds if and only if `(np) = `((n− 1)p). Denote the sequence of gap numbers for
a point p ∈ X as Gp(K) = {1 = n1 < n2 < · · · < nα}. We shall show that α = g.

By Riemann-Roch, we know that `(np) = n−g+1 for n ≥ 2g−1. Thus `((2g−1)p) = g
and the dimension increases by 1 for each subsequent increment. Therefore for the first 2g−2
entries of the `(np) sequence, there will be g − 1 spots where the dimension increases by 1,
and g− 1 spots where the dimension does not increase. Thus for each point p ∈ X, we know
#Gp = g, as 1 is always the first gap number of any point.

A point p ∈ X is a Weierstrass point of X if its gap sequence is anything other than
{1, 2, . . . , g}. In other words, if `(gp) > 1 or `(K − gp) > 0. The weight of a point is given
by

wp(K) =

g∑
i=1

(ni − i)

where ni is the ith member of the gap sequence Gp(K). It is easy to check that the weight
of a non-Weierstrass point is 0.

Miranda proves in Theorem 4.15 that if Q is a grd and wp(Q) is defined similarly using
the gap numbers ni such that `(Q− nip) 6= `(Q− (ni − 1)p), then∑

p∈X

wp(Q) = (r + 1)(d+ rg − r).

Since K is a gg−12g−2, we have that the weights of the Weierstrass points add up to g(g2 − 1).
Thus there are finitely many Weierstrass points.

Note that the set of non-gap numbers N\Gp(K) forms a semigroup under addition. If n,m
are two non-gap numbers, then `(np) > `((n−1)p) and `(mp) > `((m−1)p) and so there are
meromorphic functions f and g having poles at p of order n and m respectively, and no poles
anywhere else. Then fg is a meromorphic function with a pole of order n + m at p and no
poles anywhere else. Thus fg ∈ L((n+m)p)\L((n+m−1)p) so `((n+m)p) > `((n+m−1)p)
thus n+m is a non-gap number of p.

Next we shall show that there is an upper bound on the weight of a Weierstrass point of
g(g − 1)/2, which is only attained if X is hyperelliptic. We shall follow the proof provided
by Shor and Shaska Weierstrass points of superelliptic curves.

We shall begin by looking at the non-gap sequence Np(K) in {1, 2, . . . , 2g}. That is,
Np(K) = [2g] \ Gp(K) = {α1, . . . , αg} where 1 < α1 · · · < αg = 2g. Then for all 1 ≤ j < g,
we will show αj + αg−j ≥ 2g.

Suppose there is a j < g such that αj + αg−j < 2g. Then for all k ≤ j, we know
αk +αg−j < 2g. And since Np(K) is contained in a semigroup under addition, we know that
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αk + αg−j ∈ Np(K) with αg−j < αk + αg−j < αg = 2g. Since this holds for all 1 ≤ k ≤ j,
there would be j of these non-gaps. However, only j − 1 non-gaps exists between αg−j and
αg. This is a contradiction. Thus no such j can exist.

Now we shall show that for all p ∈ X, that wp(K) ≤ g(g − 1)/2, and that equality holds
if and only if X is hyperelliptic. Recall that

wp(K) =

g∑
i=1

(ni − i) =

g∑
i=1

ni −
g∑
i=1

i =

2g∑
i=1

i−
g∑
i=1

αi −
g∑
i=1

i

=

2g∑
i=g+1

i−
g∑
i=1

αi =

2g−1∑
i=g+1

i−
g−1∑
i=1

αi

since αg = 2g. The first sum is 3g(g − 1)/2. The second sum is at least (g − 1)/2 many
summands of at least 2g, and so

∑g−1
i=1 αi ≥ g(g−1). Thus wp(K) ≤ 3g(g−1)/2−g(g−1) =

g(g − 1)/2.

The weight is maximized when the αi values are minimized. This occurs when α1 = 2 and
(since Np(K) is contained in a semigroup under addition), we get Np(K) = {2, 4, 6, . . . , 2g}.
Thus Gp(K) = {1, 3, 5, . . . , 2g − 1}. Thus the sequence {`(np)} looks like

`(0p) = 1, `(1p) = 1, `(2p) = 2, `(3p) = 2, `(4p) = 3, `(5p) = 3, . . .

or `(np) = bn
2

+ 1c. Thus any meromorphic function with a pole only at p has an even-order
pole at p. This non-constant function in L(2p) corresponds with a degree-2 map from X to
P1 sending p (and only p) to ∞. This corresponds with the hyperelliptic map X → P1, of
which p must be a ramification point. Thus the maximum weight is only achieved when X
is hyperelliptic.

Now recall that the sum of the weights of the Weierstrass points is g(g2 − 1) and each
weight is at most g(g − 1)/2, with equality if and only if X is hyperelliptic. Then there are
at least g(g2 − 1)/(g(g − 1)/2) = 2g + 2 Weierstrass points on X, with equality if and only
if X is hyperelliptic.

Thus if X is not hyperelliptic, there are more than 2g + 2 Weierstrass points. Since
they are determined by the canonical divisor K, any automorphism on X must permute
the Weierstrass points. Furthermore, Corollary 2.10 in Miranda says that any nontrivial
automorphism on a non-hyperelliptic algebraic curve of genus g has at most 2g + 2 fixed
points. Since there are more than 2g + 2 Weierstrass points on X, any automorphism that
fixes them all must be the identity. Thus AutX is finite.
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Inflection Point: If Q is a nonempty grd, then p ∈ X is an inflection point for the linear
system Q if Gp(Q) 6= {1, 2, . . . , r + 1}.

Q is a linear system, Q ⊆ |D| a complete linear system V ⊆ L(D) is the nonzero vector
space corresponding to Q.

Wronskian: Given functions g1, . . . , gr+1 of variable z, the Wronskian of g1, . . . , gr+1 is

Wz(g1, . . . , gr)(z) = det


g1(z) g′1(z) g

(2)
1 (z) · · · g

(r)
1 (z)

g2(z) g′2(z) g
(2)
2 (z) · · · g

(r)
2 (z)

...
...

...
. . .

...

gr+1(z) g′r+1(z) g
(2)
r+1(z) · · · g

(r)
r+1(z)

 .

The Wronskian is holomorphic if each of the gi’s are holomorphic.

Lemma 4.4. If g1, . . . , gr+1 are linearly independent holomorphic functions defined in a
neighborhood of z = 0, then the Wronskian is not identically zero near z = 0.

Corollary 4.5. For a fixed linear system Q on an algebraic curve X, there are only a finite
number of inflection points.

Proof. Fix a point p ∈ X; then there is a neighborhood U of p such that for all q ∈ U , we
have D(q) = 0 if q 6= p. Fix a basis {g1, . . . , gr+1} for V . By the above analysis, we have
that q is an inflectino point for Q if and only if the Wronskian is zero at q. Since the gi’s are
linearly independent, this Wronskian is not identically zero; and since it is holomorphic, it
has discrete zeros. Hence after shrinking U there will be no inflection points in U \ {p}.

Definition 4.6. A meromorphic n-fold differential on an open set V ⊆ C is an expression
µ of the form

µ = f(z)(dz)n,

where f is a meromorphic function on V . We say that µ is a meromorphic n-fold differential
in the coordinate z.

Lemma 4.9. Let X be an algebraic curve, and let g1, . . . , g` be meromorphic functions on
X. Then

Wz(g1(z), . . . , g`(z))(dz)`(`−1)/2

defines a meromoprhic `(`− 1)/2-fold differential on X.

Lemma 4.10. Let X be an algebraic curve, D a divisor on X and let f1, . . . , f` be meromor-
phic functions in L(D). Then the meromorphic n-fold differential W (f1, . . . , f`) has poles
bounded by `D:

W (f1, . . . , f`) ∈ L(`(`−2)/2)(`D).

If one changes the basis of V , then the Wronskian changes by the determinant of the chage
of basis matrix, and so the Wronskian is well defined (up to scalar constant) by the linear
system Q itself, and not by the choice of basis. We will therefore denote it by W (Q) when
convenient; Lemma 4.10 implies that

W (Q) = L(r(r+1)/2)((r + 1)D)

if r = dimQ.
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Lemma 4.11. Let X be an algebraic curve, D a divisor on X and K = div(ω) a canonical
divisor. Then the multiplication map

ζ : L(D + nK)→ L(n)(D)

defined by ζ(f) = fωn is an isomorphism of vector spaces.

Proof. Since ω is a meromorphic 1-form, and f is a meromorphic function, then fωn is a
meromorphic n-fold differential. Moreover the multiplication map is clearly linear in f , and
is injective.

To show that fωn has poles bounded by D, fix a point p ∈ X and a local coordinate z
at p, and write ω = g(z)dz. Then ωn = g(z)n(dz)n, so that

ordp(fω
n) = ordp(f) + nordp(g) = ordp(f) + nK(p) ≥ −D(p)

if f ∈ L(D + nK); hence we see that ζ does map L(D + nK) to L(n)(D).
Finally to see that ζ is surjective, we note that if µ = h(z)(dz)n ∈ L(n)(D), and ω =

g(z)dz, then f = h/gn is a meromorphic function in L(D+nK), which is defined globally.

Corollary 4.12. Let X be an algebraic curve and Q a linear system on X with r = dimQ.
Then deg(div(W (Q)) =

∑
p∈X ordp(W (Q)) = r(r + 1)(g − 1).

Proof. Let n = r(r + 1)/2, so that by Lemma 4.10 we have that the Wronskian differential
W (Q) is an element of the space L(n)((r+1)D). Then by Lemma 4.11 there is a meromorphic
1-form ω and a meromorphic function f such that W (Q) = fωn. Then∑

p

ordp(W (Q)) =
∑
p

ordp(fω
n)

=
∑
p

[ordp(f) + nordp(ω)]

= n
∑
p

ordp(ω) (since
∑
p

ordp(f) = 0)

= n(2g − 2) = r(r + 1)(g − 1)

using the fact that deg(div(ω)) = 2g − 2.

Note that by Lemma 4.3, p is an inflection point for |D| if and only if the Wronskian
Wz(z

D(p)f1, . . . , z
D(p)fr+1) is zero at p. Since

ordp(Wz(z
D(p)f1, . . . , z

D(p)fr+1)) = ordp(z
(r+1)D(p)Wz(f1, . . . , fr+1))

(4.13)
= (r+1)D(p)+ordp(W (Q))

we have a clean link between the order of vanishing of Wz(z
D(p)f1, . . . , z

D(p)fr+1) (which
measures inflectionary behavior) and ordp(W (Q)), for which we have a global formula.

Lemma 4.14. If Gp(Q) = {n1 < n2 < · · · < nr+1} and {f1, . . . , fr+1} is a basis for V , then

ordp(Wz(z
D(p)f1, . . . , z

D(p)fr+1)) =
r+1∑
i=1

(ni − i).
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Theorem 4.15. Let X be an algebraic curve of genus g, and let Q be a grd on X. Then∑
p∈X

wp(Q) = (r + 1)(d+ rg − r).

Proof. Choose a basis f1, . . . , fr+1 for the subspace V of L(D) corresponding to Q. We
compute ∑

p

wp(Q) =
∑
p

ordp(Wz(z
D(p)f1, . . . , z

D(p)fr+1)) (4.14)

=
∑
p

[(r + 1)D(p) + ordp(W (Q))] (4.13)

= (r + 1)d+ r(r + 1)(g − 1) = (r + 1)(d+ rg − r)

using Corollary 4.12.
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Corollary 2.9. Let X be a nonhyperelliptic curve of genus g.

(a) For a general positive divisor D of degree d ≤ g, dimL(D) = 1 and dimH1(D) = g−d,
so that dim |D| = 0 and |D| = {D}.

(b) For a general positive divisor D of degree d ≥ g, H1(D) = 0 and dimL(D) = d+1−g,
so that dim |D| = d− g.

Corollary 2.10. Suppose that X is a nonhyperelliptic algebraic curve of genus g. Then
any nontrivial automorphism of X has at most 2g + 2 fixed points.

Proof. By Corollary 2.9, we may choose g + 1 general points p1, . . . , pg+1 on X and find a
meromorphic function f on X with simple poles at each pi and no other poles. If σ ∈ AutX
and is not the identity, then g = f − f ◦ σ has at most 2g+ 2 poles, namely the pi’s and the
σ−1(pi)’s. Therefore g has at most 2g + 2 zeros also. But any point fixed by σ is a zero of
g.
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