Let $C = V(y^2z - x^3 - x^2z)$ be a nodal cubic with node n = (0:0:1) over a field k. Let L be the line V(x-z). Then the two tangent lines to C at N meet L at z = (1:-1:1) and i = (1:1:1). Then $L \setminus \{z,i\} \cong k^{\times}$ as a group, via the bijection $f:L \to \mathbb{P}^1$ defined by f(a:b:a) = (a+b:b-a). Note then that f(i) = (1:0) and f(z) = (0:1). For $(a:b), (c:d) \in \mathbb{P}^1 \setminus \{(1:0), (0:1)\}$, multiplication is defined as

$$(a:b) \cdot (c:d) = (ac:bd).$$

This way, $\mathbb{P}^1_k \setminus \{(1:0), (0:1)\} \cong k^{\times}$ via $(a:b) \mapsto a/b$.

We can define multiplication \cdot_L on $L \setminus \{i, z\}$ by

$$(a:b:a) \cdot_L (c:d:c) = f^{-1}(f(a:b:a) \cdot f(c:d:c)) = (ad+bc:ac+bd:ad+bc).$$

We can also define a projection map $\pi: L \to C$ via the node n, where

$$\pi(a:b:a) = (b^2a - a^3:b^3 - ba^2:a^3).$$

This is because the line that connects (a:b:a) with n=(0:0:1) is V(bx-ay). Subbing in y=bx/a, we get $(bx/a)^2z-x^3-x^2z=0$, or $b^2x^2z-a^2x^3-a^2x^2z=0$. When $x,z\neq 0$, we have $a^2x+(a^2-b^2)=0$, or $x=(b^2-a^2)/a^2$. Since y=bx/a, we have $y=(b^3-ba^2)/a^3$ and z=1. So the point is $((b^2-a^2)/a^2:(b^3-ba^2)/a^3:1)=(b^2a-a^3:b^3-ba^2:a^3)$.

We can check that we in fact have

$$(b^3 - ba^2)^2 a^3 - (b^2 a - a^3)^3 - (b^2 a - a^3)^2 a^3 = 0.$$

To show that $C \cong k^{\times}$, we want to show that

$$\pi^{-1}(A+B) = \pi^{-1}(A) \cdot_L \pi^{-1}(B).$$

Let $\pi^{-1}(A) = (a:b:a)$, so $A = (b^2a - a^3:b^3 - ba^2:a^3)$ and $\pi^{-1}(B) = (c:d:c)$, so $B = (d^2c - c^3:d^3 - dc^2:c^3)$. Then

$$\pi^{-1}(A) \cdot_L \pi^{-1}(B) = (a:b:a) \cdot_L (c:d:c) = (ad+bc:ac+bd:ad+bc).$$

Then

$$\pi(\pi^{-1}(A) \cdot_L \pi^{-1}(B)) = \pi(ad + bc : ac + bd : ad + bc)$$
$$= ((ac + bd)^2(ad + bc) - (ad + bc)^3 : (ac + bd)^3 - (ac + bd)(ad + bc)^2 : (ad + bc)^3).$$

In order to show $\pi(\pi^{-1}(A) \cdot_L \pi^{-1}(B)) = A + B$, we need to determine whether A, B, and $-\pi(\pi^{-1}(A) \cdot_L \pi^{-1}(B))$ are collinear. Note

$$-\pi(\pi^{-1}(A) \cdot_L \pi^{-1}(B)) = ((ac+bd)^2(ad+bc) - (ad+bc)^3 : -(ac+bd)^3 + (ac+bd)(ad+bc)^2 : (ad+bc)^3).$$

So we can find that the determinant of the 3×3 matrix

$$\begin{pmatrix} (ac+bd)^2 (ad+bc) - (ad+bc)^3 & (ac+bd) (ad+bc)^2 - (ac+bd)^3 & (ad+bc)^3 \\ b^2a - a^3 & b^3 - ba^2 & a^3 \\ d^2c - c^3 & d^3 - dc^2 & c^3 \end{pmatrix}$$

is indeed 0, thanks to an online calculator. So we indeed have

$$\pi(\pi^{-1}(A) \cdot_L \pi^{-1}(B)) = A + B.$$

Thus

$$\pi^{-1}(A) \cdot_L \pi^{-1}(B) = \pi^{-1}(A+B),$$

and so $\pi^{-1}: C \setminus \{n\} \to L \setminus \{i, z\} \cong k^{\times}$ is indeed a group isomorphism.