Let $\mathbb{P}_q^3 := \mathbb{P}_{\mathbb{F}_q}^3$. For $a, b \in \mathbb{F}_{q^2}$, denote by [a, b] the set $\{(x, ax + bx^q) : x \in \mathbb{F}_{q^2}\} \subseteq \mathbb{F}_{q^2} \times \mathbb{F}_{q^2}$. This is a line in $\mathbb{F}_{q^2}^2$, which corresponds to a plane in $\mathbb{F}_q^4 \cong_{\mathbb{F}_q} \mathbb{F}_{q^2}^2$ and so corresponds to a line in \mathbb{P}_q^3 . For example, choosing q = 3 and $\mathbb{F}_9 = \mathbb{F}_3[i]/(i^2+1)$, $a = 1+i \in \mathbb{F}_9$ and $b = 2+0i \in \mathbb{F}_9$ and the \mathbb{F}_3 -vector space isomorphism $f : \mathbb{F}_9 \to \mathbb{F}_3^2$ via $f(\mu + \lambda i) = (\mu, \lambda)$, we get

$$[a,b] = \{ \vec{0}, (1+i,2), (2i,1+i), (1+2i,1+2i), (2,2i), (2+2i,1), (i,2+2i), (2+i,2+i), (1,i) \}$$

in \mathbb{F}_9^2 which via f corresponds to the plane in \mathbb{F}_3^4

 $\{\vec{0},(1,1,2,0),(0,2,1,1),(1,2,1,2),(2,0,0,2),(2,2,1,0),(0,1,2,2),(2,1,2,1),(1,0,0,1)\}$

which in \mathbb{P}^3_3 corresponds to the line

$$\{(1, 1, 2, 0), (0, 1, 2, 2), (1, 2, 1, 2), (1, 0, 0, 1)\}.$$

Bruen in Partial Spreads and Replaceable Nets describes a recipe for creating maximal partial spreads of size $q^2 - q + 2$ (Theorem 3.6). We will follow this recipe for q = 11. First we will take $\mathbb{F}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, T\}$, defining T = 10 for simplicity. We will look at $\mathbb{F}_{121} = \mathbb{F}_{11}[\alpha]/(\alpha^2 + 1)$, so $\alpha^2 = T$. Note that $[a + b\alpha, 0]$ is the line that connects (1, 0, a, b) with (0, 1, -b, a).

First we will take 12 lines in a regulus R: our regulus will specifically be made up of the lines $r_a := [a, 0]$ for $a \in \mathbb{F}_{11}$ and ℓ_{∞} , the line through (0, 0, 1, 0) and (0, 0, 0, 1). Choose two lines in R to denote u and v: we will choose $u = r_0$ and $v = \ell_{\infty}$. For our regulus R, there is a cross-regulus R^{\times} comprising 12 mutually-skew lines, with each line of R^{\times} intersecting each line of R once: therefore giving R and R^{\times} the same set of 121 points in \mathbb{P}^3_{11} . We will select two lines from R^{\times} : u' the line through $(0, 0, 1, 0) \in \ell_{\infty}$ and $(1, 0, 0, 0) \in r_0$; and v' the line through $(0, 0, 0, 1) \in \ell_{\infty}$ and $(0, 1, 0, 0) \in r_0$.

We will then pick $P = (1, 0, 0, 0) \in u' \cap v$, $Q = (0, 0, 0, 1) \in v' \cap u$, $A = (0, 0, 1, 0) \in u' \cap u$, and $B = (0, 1, 0, 0) \in v' \cap v$. Then define $\ell = \overline{AB}$ and $m = \overline{PQ}$. Pick a point $x \in \ell$ not in the regulus: we will choose x = (0, 1, 1, 0). Note $\ell \cap m = \emptyset$. What we want is a line meeting ℓ and m and is skew to all lines of R. From x, we will draw 10 lines to m (one to each point of m not in R) and name them t_a if the line intersects r_a . We will have $t_1 = t_T$, $t_5 = t_6$, $t_2 = t_9, t_4 = t_7$, and $t_3 = t_8$. This leaves five lines from x to m that are skew to every line in R. Pick one of those lines and call it y. We will choose y = V(x + w, y - z). Then R and ywill determine a complete spread S.

Note that since y contains the points (0, 1, 1, 0) and (1, 0, 0, T), we can determine if it is a line of the form $[a+b\alpha, c+d\alpha]$ for some $a+b\alpha, c+d\alpha \in \mathbb{F}_{121}$. Take (1, 0, a+c, b+d) = (1, 0, 0, T) and (0, 1, d-b, a-c) = (0, 1, 1, 0). Then a+c=0, b+d=T, d-b=1, and a-c=0. Solving this system of equations yields a=c=0 and b=T and d=0. So we in fact get $y = [T\alpha, 0]$. Thus the complete spread determined by R+y is in fact the "canonical" spread $S = \{[a, 0] : a \in \mathbb{F}_{121}\} \cup \{\ell_{\infty}\}.$

Denote by G the regulus determined by u, v, and y. Note $\ell \in G^{\times}$. In fact, we can write $G = \{[a\alpha, 0] : a \in \mathbb{F}_{11}\} \cup \{\ell_{\infty}\} \subseteq S.$

We will then write $\mathscr{B} = S \setminus (R \cup G)$, where R is the $[a, 0]_{\infty}$ regulus and G is the $[a\alpha, 0]_{\infty}$ regulus. Note that $R \cap G = \{r_0, \ell_{\infty}\}$. Denote by $G^* = G \setminus \{r_0, \ell_{\infty}\}$. Then $S_1 = \mathscr{B} \cup G^* \cup R^{\times}$ is a spread.

Now, recall $\ell = \overline{AB}$. Denote by \mathscr{A} the lines of S_1 that meet ℓ ; \mathscr{A} is not a regulus (despite $\#\mathscr{A} = 12$); \mathscr{A} has two transversals: ℓ and m. Finally, denote by W the set $S_1 \setminus \mathscr{A} \cup \{\ell, m\}$. W is a maximal partial spread of size $q^2 - q + 1$ (Theorem 3.5 in Bruen). In our q = 11 case, that is 111.

Set theoretically, we have

$$W = (((S \setminus (R \cap G)) \cup G^* \cup R^{\times}) \setminus \mathscr{A}) \cup \{\ell, m\}.$$

So $\mathbb{P}_{11}^3 \setminus W$ is the set of points on lines of S_1 that meet ℓ other than points actually on ℓ or m. So the complement has $q^3 + q^2 + q + 1 - (q^2 - q + 2)(q + 1) = q^3 + q^2 + q + 1 - (q^3 + q + 2) = q^2 - 1$ points.

Note that

$$\mathscr{A} = \{u', v', y = r_{T\alpha}, r_{9\alpha}, r_{8\alpha}, \dots, r_{\alpha}\}$$

where $u', v' \in R^{\times}$ and $r_{T\alpha}, r_{9\alpha}, r_{8\alpha}, \ldots, r_{\alpha} \in G^*$. In our case, we have $G^* \subseteq \mathscr{A}$ (I guess in Bruen's general construction, this isn't necessarily true?) and so we can simplify the construction of W considerably. We get $W = (S \setminus (R \cap G)) \cup (R^{\times} \setminus \{u', v'\}) \cup \{\ell, m\}$.