Let k be an algebraically closed field and let $F \in k[x_0, x_1, \ldots, x_n]$ be a homogeneous polynomial satisfying $F(1, 0, \ldots, 0) = 0$. Let V(F) be the corresponding variety. Let deg F = d.

We know that $P = [1:0:\cdots:0] \in V(F)$ and so F has the form

$$F = x_0^{d-1} F_1(x_1, \dots, x_n) + x_0^{d-2} F_2(x_1, \dots, x_n) + \dots + x_0 F_{d-1}(x_1, \dots, x_n) + F_d(x_1, \dots, x_n)$$

with each F_i homogeneous.

We wish to show that $Y = \bigcap_{i=1}^d V(F_d) \subseteq \mathbb{P}_k^{n-1}$ parametrizes the set of lines ℓ satisfying $P \in \ell \subseteq V(F)$.

First let $[a_1 : \cdots : a_n] \in Y$. Then we claim that the line connecting P and $[1 : a_1 : \cdots : a_n]$ is contained in V(F). Note that the line ℓ connecting P and $[1 : a_1 : \cdots : a_n]$ can be parametrized by $[u : ta_1 : \cdots : ta_n]$ for $[u : t] \in \mathbb{P}^1_k$. Then note that

$$F(u, ta_1, \dots, ta_n) = u^{d-1} F_1(ta_1, \dots, ta_n) + \dots + u F_{d-1}(ta_1, \dots, ta_n) + F_d(ta_1, \dots, ta_n)$$

$$= u^{d-1} t F_1(a_1, \dots, a_n) + \dots + u t^{d-1} F_{d-1}(a_1, \dots, a_n) + t^d F_d(a_1, \dots, a_n) = 0$$

since $F_i(a_1,\ldots,a_n)=0$ for all $1\leq i\leq d$. Thus every point on ℓ is in V(F) and so $\ell\subseteq V(F)$.

Also note that this correspondence is unique because different points in \mathbb{P}_k^{n-1} will correspond to different lines in \mathbb{P}_k^n through P.

Now let us show the reverse direction. Let ℓ be a line in \mathbb{P}^n_k such that $P \in \ell \subseteq V(F)$. We wish to show that ℓ corresponds to some point in $Y \subseteq \mathbb{P}^{n-1}$.

Let $P \neq [1:a_1:\dots:a_n] \in \ell$. We wish to show that $F_i(a_1,\dots,a_n)=0$ for all $1 \leq i \leq d$. Since $P, [1:a_1:\dots:a_n] \in \ell$, we know once again that ℓ can be parametrized by $[u:t] \in \mathbb{P}^1_k$ as $[u:ta_1:\dots:ta_n]$. Since $\ell \subseteq V(F)$, we know that $F(u,ta_1,\dots,ta_n)=0$ for all $[u:t] \in \mathbb{P}^1_k$. Thus

$$0 = F(u, ta_1, \dots, ta_n) = u^{d-1}tF_1(a_1, \dots, a_n) + \dots + ut^{d-1}F_{d-1}(a_1, \dots, a_n) + t^dF_d(a_1, \dots, a_n)$$

for all $[u:t] \in \mathbb{P}^1_k$. This is clear when t=0. When $t \neq 0$ we have

$$0 = u^{d-1}F_1(a_1, \dots, a_n) + \dots + uF_{d-1}(a_1, \dots, a_n) + F_d(a_1, \dots, a_n) \in k[u].$$

This polynomial can only be 0 when all of the coefficients are 0. Thus we know that $F_i(a_1, \ldots, a_n) = 0$ for all $1 \le i \le d$. Therefore ℓ corresponds to $[a_1 : \cdots : a_n] \in Y$.

Thus we have our conclusion that Y parametrizes the set of lines ℓ satisfying $P \in \ell \subseteq V(F)$. Thus note that when Y is empty, we know that no line going through P is contained in V(F).