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I am following Curtis Bright’s 2013 notes Computing the Galois groups of a polynomial .
I will start in Chapter 2.
We will assume f is an irreducible polynomial over Q. Then f is separable and Gal(f)

(which is the Galois group of the splitting field of f) acts transitively on the roots of f .

Proof. We know f is separable because f ′ has smaller degree than f , and since f has no
nontrivial divisors, gcd(f, f ′) = 1. But if α were a root of multiplicity > 1, then α would be a
root of f ′, therefore the minimal polynomial of α would divide gcd(f, f ′) = 1, a contradiction.

That is because if f is irreducible, then f is prime. In fact, every irreducible element of
a GCD domain is prime. That is, if f |gh, then f |g or f |h. Irreducibility of f means that
f = ab only if a or b is a unit. Let f |gh and let z = gcd(fh, gh). If gh = 0, then z = fh and
so fh|gh and by cancellation (if h ̸= 0), f |g. If h = 0 then f |h.

Now let gh ̸= 0. Since f and h both divide fh and gh, there are some elements u, v
such that fu = z = hv. So then hv = z divides fh, so hv|fh and by cancellation (since
h ̸= 0), v|f . Then by irreducibility, either v is a unit or f ∼ v (that is, f and v are unit
multiplies of each other). If v is a unit, then since fu = hv, we have f(uv−1) = h and so
f |h. If f ∼ v, then there is a unit w such that f = vw and so z ∼ fh and also u ∼ h. Then
fh = gcd(fh, gh) and so fh|gh and by cancellation f |g.

Also, if g ̸∼ h are both irreducible, then g and h have no roots in common. This is
because if g(α) = h(α) = 0, then mα| gcd(g, h). But this contradicts g and h both being
irreducible and not similar, implying gcd(g, h) = 1.

In general, Gal(gh) ⊆ Gal(g)×Gal(h). This is a result of the translation theorem.

Theorem Translation. Let L/F and M/F be field extensions, with L/F Galois. Then
LM/M is a Galois extension with

Gal(LM/M) ∼= Gal(L/L ∩M).

Proof. Since L/F is finite Galois, L is the splitting field over F with respect to some poly-
nomial f(x) ∈ F [x]. Then LM is a splitting field of f(x) ∈M [x] over M , which is separable
over L, so LM/M is Galois. Consider the restriction homomorphism

Gal(LM/M) → Gal(L/F ), σ 7→ σ|L.

This has trivial kernel: an automorphism σ ∈ Gal(LM/M) that is trivial on L must me
trivial on all of LM since it is by essence trivial onM (σ ∈ Gal(LM/M)). Thus the function
is injective.

Thus Gal(LM/M) is isomorphic to some subgroup of Gal(L/F ). Thus there is some
intermediate field F ⊆ K ⊆ L such that Gal(LM/M) ∼= Gal(L/K). So

K = {ℓ ∈ L : σ(ℓ) = ℓ, σ ∈ Gal(LM/M)}.

An element of LM is fixed by Gal(LM/M) when it belongs to M , so K = L∩M . Therefore
the image of Gal(LM/M) under the restriction map is Gal(L/L ∩M).
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Now the inclusion Gal(gh) ⊆ Gal(g) × Gal(h) can be proven. Let spl(g) = L and
spl(h) =M . Then Gal(LM/M) ∼= Gal(L/L ∩M) and Gal(LM/L) ∼= Gal(M/L ∩M). Note
that

Gal(LM/M),Gal(LM/L) ⊴ Gal(LM/L ∩M)

and their intersection is trivial. Because they are two normal subgroups with trivial inter-
section,

Gal(LM/L)Gal(LM/M) ∼= Gal(LM/L)×Gal(LM/M).

Thus

Gal(L/L ∩M)×Gal(M/L ∩M) ∼= Gal(LM/L)×Gal(LM/M)
∼= Gal(LM/L)Gal(LM/M) ⊆ Gal(LM/L ∩M).

The elementary symmetric polynomials sn ∈ R[x1, . . . , xn] are

s1 := x1 + · · ·+ xn (n terms)

s2 := x1x2 + · · ·+ xn−1xn (

(
n

2

)
terms)

...

sn := x1x2 · · ·xn (1 term).

Then in R[x, x1, . . . , xn],

n∏
i=1

(x− xi) = xn − s1x
n−1 + · · ·+ (−1)nsn.

For example, for n = 2, we have

(x− x1)(x− x2) = x2 − xx1 − xx2 + x1x2 = x2 − (x1 + x2)x+ x1x2 = x2 − s1x+ s2.

Now let f be an irreducible polynomial with roots α1, . . . , αn. Then

f(x) =
n∏

i=1

(x− αi) = xn − s1(α1, . . . , αn)x
n−1 + · · ·+ (−1)nsn(α1, . . . , αn)

and so si(α1, . . . , αn) ∈ Q for all si.

Theorem FToSP. Let s(x1, . . . , xn) ∈ R[x1, . . . , xn] be a symmetric polynomial. Then s
can be expressed in R[s1, . . . , sn].

Denote by orb(p) the orbit of a polynomial p under the Sn action. Then 1 ≤ #orb(p) ≤ n!.

Definition 1. Let f ∈ Z[x] be irreducible with roots α1, . . . , αn and p ∈ Z[x1, . . . , xn]. Then
the resolvent polynomial Rf,p ∈ Z[y] is defined as

Rf,p(y) =
∏

pi∈orb(p)

(y − pi(α1, . . . , αn)).
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Example 1. Take p = x1 + x2 and f(x) = x3 − 2. Then

Rf,p(y) = (y − 3
√
2− ζ3

3
√
2)(y − ζ3

3
√
2− ζ23

3
√
2)(y − 3

√
2− ζ23

3
√
2)

= (y + ζ23
3
√
2)(y +

3
√
2)(y + ζ3

3
√
2) = y3 + 2.

Example 2. Take p = x1 + x2 and f = x4 + 1. Then

Rf,p(y) = (y − ζ4 − ζ34 )(y − ζ4 − ζ54 )(y − ζ4 − ζ74 )(y − ζ34 − ζ54 )(y − ζ34 − ζ74 )(y − ζ54 − ζ74 )

= (y − i
√
2)(y − 0)(y −

√
2)(y +

√
2)(y − 0)(y + i

√
2) = y2(y2 + 2)(y2 − 2) = y6 − 4y2.

Example 3. Take p = x1 + x2 and f = x4 + x3 + x2 + 1. Then

Rf,p(y) = (y − ζ5 − ζ25 )(y − ζ5 − ζ35 )(y − ζ5 − ζ45 )(y − ζ25 − ζ35 )(y − ζ25 − ζ45 )(y − ζ35 − ζ45 )

= y6 + 3y5 + 5y4 + 5y3 − 2y − 1

A useful example is p =
∏

i<j(xi − xj). Then orb(p) = {p,−p}, and

Rf,p =

(
y −

∏
i<j

(αi − αj)

)(
y +

∏
i<j

(αi − αj)

)
= y −∆(f).

It is worth noting that the coefficients of the resolvent are symmetric polynomials evalu-
ated at α1, . . . , αn (because permuting the roots α1, . . . , αn does not change the resolvent).
So as long as f ∈ Z[x] and p ∈ Z[x1, . . . , xn], then si(α1, . . . , αn) ∈ Z and so Rf,p ∈ Z[y].

If σ ∈ Gal(f) then we can define an action of σ on the roots of Rf,p by

σ(pi(α1, . . . , αn)) = pi(σ(α1), . . . , σ(αn))

where pi ∈ orb(p). This is of course well-defined because σ is a permutation of the α1, . . . , αn

and so pi(σ(α1), . . . , σ(αn)) = pj(α1, . . . , αn) for some pj ∈ orb(p).

Theorem 2. Let f ∈ Z[x] be irreducible with roots α1, . . . , αn and let p ∈ Z[x1, . . . , xn].
Then there is a group homomorphism

ϕ : Gal(f) → Gal(Rf,p)

defined by
ϕ(σ)(pi(α1, . . . , αn)) = pi(σ(α1), . . . , σ(αn))

for all pi ∈ orb(p). If Rf,p(y) ∈ Z[y] is separable, then ϕ is surjective.

Note that Gal(Rf,p) may still not act transitively on the roots of Rf,p if Rf,p is not irreducible.
For example, with f = x4 + x3 + x2 + x+ 1 and p = x1 + x2, we have

Rf,p = y6 + 3y5 + 5y4 + 5y3 − 2y − 1 = (y2 + y − 1)(y4 + 2y3 + 4y2 + 3y + 1),

so Gal(Rf,p) does not act transitively on the roots of Rf,p.
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Proof. Note that Rf,p’s roots are built out of f ’s roots, so

spl(Rf,p) ⊆ spl(f).

Therefore every automorphism of spl(Rf,p) is the restriction of some automorphism of spl(f).
In other words, Gal(Rf,p) ⊆ Gal(f).

Let’s consider the polynomial f = x4 + 2x3 + 2x+ 1. The four roots of f are

rn =
1

2

(
−1 + in

4
√
3
√
2 + (−1)2n+1

√
3
)
, 0 ≤ n ≤ 3, i2 = −1.

There are four subgroups of S4 that act transitively on the roots: S4, A4, D4, V4, and C4.
Therefore Gal(f) is isomorphic to one of those five groups.

Let p = x0 + x1 ∈ Z[x0, x1, x2, x3]. Then

Rf,p = (y − r0 − r1)(y − r0 − r2)(y − r0 − r3)(y − r1 − r2)(y − r1 − r3)(y − r2 − r3)

= y6 + 6y5 + 12y4 + 8y3 − 8 = (y2 + 2y − 2)(y4 + 4y3 + 6y2 + 4y + 4).

And so of the six roots of Rf,p, there is one orbit of size 2 and one orbit of size 4.
Now let q = x0 − x1 ∈ Z[x0, x1, x2, x3]. Then #orb(q) = 12, and

Rf,q = y12 − 12y10 + 48y8 + 144y6 − 576y4 − 1728 = (y4 − 12)(y8 − 12y6 + 60y4 + 144)

and so Gal(Rf,q) acts on the roots of Rf,q with one orbit of size 4 and one orbit of size 8.
Of the five groups listed above, only two have the behavior of Rf,p yielding one orbit of

size two and one orbit of size four: D4 and C4. Observe, if Gal(f) ∼= D4, then the two orbits
of Gal(Rf,p) are

{r0 + r1, r1 + r2, r2 + r3, r3 + r0}, {r0 + r2, r1 + r3},

and if Gal(f) ∼= C4, then the two orbits of Gal(Rf,p) are {r0+r1, r1+r2, r2+r3, r3+r0}, {r0+
r2, r1 + r3} as well.

By contrast, S4 yields one orbit of size 6, A4 yields one orbit of size 6, and V4 yields three
orbits of size 2.

Therefore Gal(f) is isomorphic to either D4 or C4. In order to distinguish, we can use
Gal(Rf,q), which has one orbit of size 4 and one orbit of size 8.

If Gal(f) ∼= C4, then Gal(Rf,q) would have the following three orbits of size four:

{r0−r1, r1−r2, r2−r3, r3−r0}, {r0−r2, r1−r3, r2−r0, r1−r3}, {r0−r3, r1−r0, r2−r1, r3−r2}.

Whereas, if Gal(f) ∼= D4, then Gal(Rf,q) has the following orbits of size eight and four:

{r0−r1, r1−r2, r2−r3, r3−r0, r0−r3, r1−r0, r2−r1, r3−r2}, {r0−r2, r1−r3, r2−r0, r1−r3}.

Therefore we may conclude that Gal(f) ∼= D4, and so [spl(f) : Q] = 8. Thus, I propose
spl(f) = Q(

√
2 4
√
3, i) = Q( 4

√
12, i) = spl(x4 − 12).

We can construct Gal(f) = ⟨r, s|r4, s2, rsrs⟩, where r( 4
√
12) = i 4

√
12 and r(i) = i, and

s( 4
√
12) = 4

√
12 and s(i) = i. Then we have the following hierarchy of groups:
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D4

⟨r2, rs⟩ ⟨r⟩ ⟨r2, s⟩

⟨r3s⟩ ⟨rs⟩ ⟨r2⟩ ⟨s⟩ ⟨r2s⟩

1

which yields the corresponding hierarchy of field extensions:

Q

Q(i
√
12) Q(i) Q(

√
12)

Q( 4
√
12− i 4

√
12) Q( 4

√
12 + i 4

√
12) Q(i,

√
12) Q( 4

√
12) Q(i 4

√
12)

spl(f)

Theorem FToGT. Galois extensions correspond to normal subgroups; that is: If K is
an intermediate field of L/F and K/F is Galois, then Gal(L/K) ⊴ Gal(L/F ). If N ⊴
Gal(L/F ), then LN/F is Galois.

Proof. First let L/F be a Galois extension. Let K be an intermediate field of L/F , and
K/F be Galois. Then define

ρK : Gal(L/F ) → Gal(K/F )

to be the restriction map: ρK(σ) = σ|K . We would like to prove that ker ρK = Gal(L/K),
and so Gal(L/K) ⊴ Gal(L/F ). First, let σ ∈ ker ρK . Then σ|K = IdK , and so σ fixes K,
and so σ ∈ Gal(L/K).

Now let σ ∈ Gal(L/K). Then σ fixes K and so σ|K = IdK . Thus σ ∈ ker ρK . Thus
ker ρK = Gal(L/K) ⊴ Gal(L/F ).

Now let N ⊴ Gal(L/F ). We would like to show that LN is Galois. We can use the
definition of Galois: LN is Galois if and only if #Aut(LN/F ) =

[
LN : F

]
. We know that[

L : LN
] [
LN : F

]
= [L : F ] .

Since [Gal(L/F ) : N ] = [LN : F ], and since N is normal, we have

#Gal(L/F )/N = [LN : F ].
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Now we just want to prove that

#Aut(LN/F ) = #Gal(L/F )/N.

We can define a map
ψN : Gal(L/F ) → Aut(LN/F )

by ψN(σ) = σ|LN . Then we want to show that ψN is surjective and kerψN = N . For the
first, we can take ν ∈ Aut(LN/F ). Then there is some σ ∈ Gal(L/F ) such that ν = σ|LN

since F ⊆ LN ⊆ L and so Aut(LN/F ) ≤ Gal(L/F ).
Now let σ ∈ kerψN . Then σ|LN = IdLN , and so by definition of LN , σ ∈ N . Now let

σ ∈ N . Then by definition, σ|LN = IdLN and so σ ∈ kerψN . Thus by the first isomorphism
theorem

Gal(L/F )/N ∼= Aut(LN/F )

and so
#Aut(LN/F ) = [LN : F ]

and so LN/F is Galois.

In the hierarchy of subgroups above, only six of the subgroups are normal and so only six of
the field extensions are Galois. Here is the hierarchy of field extensions again, this time with
the Galois extensions rewritten in terms of the polynomials of which they are the splitting
field.

spl(1)

spl(x2 + 12) spl(x2 + 1) spl(x2 − 12)

Q( 4
√
12(1− i)) Q( 4

√
12(1 + i)) spl(x4 − 144) Q( 4

√
12) Q(i 4

√
12)

spl(x4 − 12)

Let r = 1
2
(−1 + 4

√
12 −

√
3), and let s = r2. I want to know if Q(s) = Q(r). Since r

satisfies r4+2r3+2r+1 = 0, we have s2+2s
√
2+2

√
s+1 = 0, so (s2+1)2 = (2s+2)2s, so

s4 + 2s2 + 1 = 4s3 + 8s2 + 4s, so s4 − 4s3 − 6s2 − 4s+ 1 = 0, so [Q(s) : Q] = [Q(r) : Q] = 4,
and Q(s) ⊆ Q(r), so Q(s) = Q(r). Now how can we write r in the basis {1, s, s2, s3} =
{1, r2,−2r3 − 2r − 1,−10r3 + 3r2 − 6r − 4}? Then

r = −1

4
− 3

4
s− 5

4
s2 +

1

4
s3.

That way when we find
α =

√
−r2 − 1
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we can write
s = −α2 − 1

upon constructing Q(α). So then

r = −1

4
+

3

4
(1 + α2)− 5

4
(1 + α2)2 − 1

4
(1 + α2)3.

According to Wolfram, the minimal polynomial of α is

x8 + 8x6 + 12x4 + 8x2 + 4.

The splitting field L of x8 + 8x6 + 12x4 + 8x2 + 4 is a degree-2 extension of Q( 4
√
12, i) =

spl(x4 − 12), so [L : Q] = 16. Furthermore, D4 is an index-2 subgroup of Gal(L/Q). This
is because the minimal polynomial of α is x2 + r2 + 1 ∈ Q( 4

√
12, i)[x]. Furthermore, D4 is

a normal subgroup of Gal(L/Q) because it corresponds to a Galois extension. According to
GroupNames, there are six groups of order 16 that are transitive on a set of eight points,
and only four of those have a normal (or any) subgroup isomorphic to D4. They are:

D8, SD16, C2 ×D4, C4 ◦D4.

The eight roots of x8 + 8x6 + 12x4 + 8x2 + 4 are

±i

√
2 +

√
3 +

√
3 + 2

√
3

±i

√
2 +

√
3−

√
3 + 2

√
3

±

√
−2 +

√
3 + i

√
−3 + 2

√
3

±

√
−2 +

√
3− i

√
−3 + 2

√
3

If Gal(L/Q) ∼= D8, then the 28 sums ri + rj with i ̸= j form three orbits of size 8 and one
orbit of size 4. By contrast, if Gal(L/Q) ∼= C2×D4, then there are three orbits of size 4 and
two orbits of size 8.

Unfortunately, the resolvent polynomial is not square-free. It is

u28 + 48u26 + 960u24 + 10432u22 + 67584u20 + 270336u18

+650368u16 + 807936u14 + 122880u12 − 811008u10 − 589824u8 − 110592u4

which factors as

(u)4(u2 + 2)2(u4 + 6u2 + 12)2(u4 + 12u2 − 12)(u8 + 20u6 + 108u4 − 16u2 + 16).
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