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Part 1 is from the paper “Lines in P3.” Let chark = 0. Points in P3 correspond to
(projective equivalence classes) of nonzero vectors in k4. That is, the point in P3 with
homogeneous coordinates [X : Y : Z : W ] is the line [v] spanned by the nonzero vector

v :=


X
Y
Z
W

 ∈ k4.

Similarly, planes in P3 correspond to (projective equivalence classes) of covectors

ϕ :=
[
a b c d

]
∈ (k4)∗,

where [ϕ] = Ja : b : c : dK is the hyperplane defined in homogeneous coordinates by ϕ(v) = 0,
that is,

aX + bY + cZ + dW = 0. (1)

That is, the point [X : Y : Z : W ] lies on the plane Ja : b : c : dK if and only if (1) is satisfied.
Thus points and planes in P3 are defined in homogeneous coordinates by vectors in the

vector space V := k4 and covectors in its dual vector space V ∗ = (k4)∗. Moreover, the
orthogonal complement v⊥ of the line kv ⊆ k4 is the hyperplane in k4 defined by the
covector v†, which is the conjugate transpose of v.

How can you describe lines in P3 in a similar way by homogeneous coordinates?

Exterior Outer Products

Recall that so(n) denotes the set of n× n skew-symmetric matrices. That is, X ∈ Matn
such that X +X† = 0. The exterior outer product is the alternating bilinear map:

kn × kn → so(n)

(u, v) 7→ u ∧ v := v†u− u†v.

We shall verify the following:

(1) (u ∧ v)(w) = (u · w)v − (v · w)u.

(2) If n = 3, then (u ∧ v)(w) = (u× v)× w.

(3) The vectors u and v are linearly dependent if and only if u ∧ v = 0.

(4) If u and v are linearly independent, then the projective equivalence class [u ∧ v] ∈
P(so(n)) depends only on the plane k〈u, v〉.

(5) The orthogonal complement of the plane k〈u, v〉 ⊆ V lies in the kernel ker(u ∧ v). In
other words,

k〈u, v〉⊥ ⊆ ker(u ∧ v).
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Proof.

(1) First let u = (u1, u2, . . . , un) and let v = (v1, v2, . . . , vn). Then

u ∧ v =


u1v1 u2v1 · · · unv1

u1v2 u2v2 · · · unv2
...

...
. . .

...
u1vn u2vn · · · unvn

−

u1v1 u1v2 · · · u1vn
u2v1 u2v2 · · · u2vn

...
...

. . .
...

unv1 unv2 · · · unvn



=


0 u2v1 − u1v2 · · · unv1 − u1vn

u1v2 − u2v1 0 · · · unv2 − u2vn
...

...
. . .

...
u1vn − unv1 u2vn − unv2 · · · 0


Then let w = (w1, w2, . . . , wn). Then

(u ∧ v)(w) =

(
n∑
i=1

(uiv1 − u1vi)wi, . . . ,
n∑
i=1

(uivn − unvi)wi

)

=

(
n∑
i=1

uiwiv1, . . . ,
n∑
i=1

uiwivn

)
−

(
n∑
i=1

viwiu1, . . . ,
n∑
i=1

viwiun

)

=

(
n∑
i=1

uiwi

)
v −

(
n∑
i=1

viwi

)
u = (u · w)v − (v · w)u.

(2) Now let n = 3. Then

(u ∧ v)(w) = (u · w)v − (v · w)u

= (u1w1 + u2w2 + u3w3)v − (v1w1 + v2w2 + v3w3)u = (a, b, c)

where

a = u2v1w2 + u3v1w3 − u1v2w2 − u1v3w3

b = u1v2w1 + u3v2w3 − u2v1w1 − u2v3w3

c = u1v3w1 + u2v3w2 − u3v1w1 − u3v2w2.

Now note that u × v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) =: (x, y, z). Then
(x, y, z)× w = (yw3 − zw2, zw1 − xw3, xw2 − yw1). Now note that

a = yw3 − zw2

b = zw1 − xw3

c = xw2 − yw1

and so (u ∧ v)(w) = (u× v)× w.
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(3) (⇒) Suppose u and v are linearly dependent. Thus there are a, b ∈ k× such that
au + bv = 0. Thus v = cu where c = −a/b. Then u ∧ v = (cu)†u − u†(cu) =
c(u†u− u†u) = 0.

(⇐) Now suppose u ∧ v = 0. Then we know from (2) that (u · w)v = (v · w)u for all
w ∈ kn, including w ∈ k〈u, v〉 where u · w 6= 0 or v · w 6= 0. Thus u and v are linearly
dependent.

(4) Let u and v be linearly independent. Then k〈u, v〉 is a plane in kn. Let a, b, c, d ∈ k
be such that au+ bv, cu+ dv ∈ k〈u, v〉 are linearly independent vectors. We will show
that u ∧ v ∼ (au+ bv) ∧ (cu+ dv) ∈ P(so(n)). Note that dimP(so(n)) = n2−n

2
− 1.

Let w ∈ kn. Then

((au+ bv) · w)(cu+ dv)− ((cu+ dv) · w)(au+ bv)

= (a(u · w) + b(v · w))(cu+ dv)− (c(u · w) + d(v · w))(au+ bv)

= (ad− bc)(u · w)v + (bc− ad)(v · w)u = (ad− bc)((u · w)v − (v · w)u)

= (ad− bc)(u ∧ v)(w).

Therefore (au+ bv)∧ (cu+dv) = (ad− bc)(u∧v) and so [u∧v] = [(au+ bv)∧ (cu+dv)]
in P(so(n)).

Now let s, t ∈ kn be linearly independent vectors and suppose there is a λ ∈ k× such
that s ∧ t = λ(u ∧ v). Then for all w ∈ kn, we have

(s · w)t− (t · w)s = λ((u · w)v − (v · w)u) = (λu · w)v − (λv · w)u ∈ k〈u, v〉.

Since this is true for all w ∈ kn, we have s, t ∈ k〈u, v〉. For example, since s and t are
linearly independent, we may select a w such that s · w = 0 and t · w 6= 0 and vice
versa. Therefore k〈s, t〉 = k〈u, v〉. Thus the equivalence class of [u ∧ v] in P(so(n))
depends solely on the plane k〈u, v〉.

(5) Let z ∈ k〈u, v〉⊥. Thus z · u = z · v = 0. Thus (u ∧ v)(z) = (u · z)v − (v · z)u = 0 and
so z ∈ ker(u ∧ v). Thus k〈u, v〉⊥ ⊆ ker(u ∧ v).

Because of (4), every 2-dimensional linear subspace L (plane through the origin) of kn de-
termines an element of the projective space P(so(n)); the corresponding homogeneous coor-
dinates are called the Plücker coordinates of the plane, or the corresponding projective line
P(L) ⊆ P(kn).

Plücker coordinates in P3

Let V = k4 and Λ = so(4) be the 6-dimensional vector space of 4 × 4 skew-symmetric
matrices. Then lines in P3 = P(V ) correspond to 2-dimensional linear subspaces of V , which
in turn correspond to projective equivalence classes of certain nonzero elements u ∧ v ∈ Λ.
Which elements of Λ correspond to lines in P3?
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Since dimV = 4, the plane k〈u, v〉 6= V , so there is a nonzero vector n normal to this
plane. By the above, n lies in the kernel of the skew-symmetric matrix u ∧ v. Thus lines in
P3 determine nonzero singular (non-injective) matrices in Λ. Note that

det


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 = c2d2 + b2e2 − 2bcde+ a2f 2 + 2acdf − 2abef = (af − be+ cd)2.

When n is even, skew-symmetric matrices in so(n) have the following property. In general
the determinant of an n × n is a degree n polynomial in its entries. When n is even, there
is a degree n/2 polynomial P on so(n) (called the Pfaffian) such that if M ∈ so(n), then

detM = P(M)2.

That is, in even dimensions, the determinant of a skew-symmetric matrix is a perfect square.
For example, then n = 2, the general skew-symmetric matrix is

M =

(
0 y
−y 0

)
,

which has determinant y2. Thus P(M) = y.
When n = 4, the Pfaffian is a quadratic polynomial. We’ve seen above that

det


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 = (af − be+ cd)2

so the Pfaffian is
P(M) = af − be+ cd.

The vector space Λ has dimension 6, with coordinates

a, b, c, d, e, f.

Thus projective equivalence classes of nonzero 4×4 skew-symmetric matrices is the projective
space

P(Λ) ∼= P5

with homogeneous coordinates
[a : b : c : d : e : f ].

The nonzero singular matrices (namely, those of rank two), are those for which P(M) = 0,
which is just the homogeneous quadratic polynomial condition:

af − be+ cd = 0.

This defines a quadratic hypersurface Q in P5. Since it is defined by one equation in a
5-dimensional space, this quadratic has dimension 4.
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Intuitively, we would expect that the space of lines in P3 has dimension 4. A generic line
` ⊆ P3 is not ideal and does not pass through (0 : 0 : 0 : 1). In that case, there is a point

p(`) ∈ A3 \ {0}

closest to the origin 0 ∈ k3. These points form a 3-dimensional space k3 \ {0}.
Any point p ∈ k3 \ {0} is the closest point p(`) for some `. Namely, look at the plane

W (p) containing p and is normal to the vector from 0 to p. Any line ` on W (p) passing
through p satisfies p(`) = p. The set of all lines ` ⊆ W (p) passing through p forms a P1,
which is one-dimensional. Thus lines in P3 are parametrized by a 3 + 1 = 4 dimensional
space.

This space is the quadric Q defined above.
Just as quadric surfaces in P3 can be parametrized as tori S1 × S1, the 4-dimensional

quadric hypersurface in P5 can be parametrized by S2 × S2. Namely, make the elementary
linear substitution

X = (c+ d)/2, A = (c− d)/2,

Y = (b+ e)/2, B = (b− e)/2,
Z = (a+ f)/2, C = (a− f)/2

so that

P(M) = cd− be+ af

= X2 − A2 + Y 2 −B2 + Z2 − C2.

Thus Q is the quadric in P5 consisting of points with homogeneous coordinates [X : Y : Z :
A : B : C] satisfying

X2 + Y 2 + Z2 = A2 +B2 + C2.

By projective rescaling we may assume that X2 +Y 2 +Z2 = A2 +B2 +C2 = 1. Each of these
equations describes an S2. Since the coordinates (A,B,C) and (X, Y, Z) are independent of
one another, the quadricn Q looks like S2 × S2.

Orthogonal Complement and Involution

Since P is a homogeneous quadratic function on the vector space Λ, it arises from a sym-
metric bilinear form P on Λ by the usual correspondences:

P(X) = P(X,X),

P(X, Y ) :=
1

2
(P(X + Y )−P(X)−P(Y )).

Explicitly,

P(M,N) =
1

2
(cd′ + c′d− be′ − b′e+ af ′ + a′f).
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The usual inner product (dot product) on so(4) is given by

M ·N = −1

2
tr(MN)

aa′ + bb′ + cc′ + dd′ + ee′ + ff ′.

We can construct a linear isomorphism I : Λ→ Λ defined by

I(M) =


0 f −e d
−f 0 c −b
e −c 0 a
−d b −a 0

 ,

that is,
I(a, b, c, d, e, f) = (f,−e, d, c,−b, a).

So I ◦ I = idΛ and P(I(M)) = P(M) and M · I(M) = 2af − 2be + 2cd = P(M) +
P(I(M)).

Geometrically, if M ∈ Q corresponds to a 2-dimensional linear subspace L ⊆ V , then
I(M) corresponds to the orthogonal complement L⊥ ⊆ V . You can also think of the invo-
lution I as mapping the points on the S2’s:

I(X : Y : Z : A : B : C) = (X : −Y : Z : −A : B : −C).

If p ∈ P3 is a point corresponding to a 1-dimensional linear subspace L ⊆ V , then its dual
plane p∗ ⊆ P3 corresponds to the orthogonal complement L⊥. The homogeneous coordinates
of p∗ form the transpose of the vector formed by the homogeneous coordinates of p. Then I
maps lines through p to the lines contained in the plane p∗. Note that (U ∩ V )⊥ = U⊥+ V ⊥

and (U + V )⊥ = U⊥ ∩ V ⊥.
Here is an example. Take p to be the point (0 : 0 : 0 : 1). Then p∗ is the plane w = 0.

The line through 0 in the direction (a, b, c, 1) has Plücker coordinates

M =


0 0 0 a
0 0 0 b
0 0 0 c
−a −b −c 0

 .

Its dual is a line on the plane w = 0, which in the plane w = 0 has homogeneous coordinates
Ja : b : cK (that is, the line defined in homogeneous coordinates aX + bY + cZ = 0). In P3

this line has Plücker coordinates

I(M) =


0 c −b 0
−c 0 a 0
b −a 0 0
0 0 0 0

 .

In general, the Plücker coordinates of the line that connects u, v ∈ P3 are

u ∧ v =


0 u2v1 − u1v2 u3v1 − u1v3 u4v1 − u1v4

u1v2 − u2v1 0 u3v2 − u2v3 u4v2 − u2v4

u1v3 − u3v1 u2v3 − u3v2 0 u4v3 − u3v4

u1v4 − u4v1 u2v4 − u4v2 u3v4 − u4v3 0
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and the dual of this line is

I(u ∧ v) =


0 u4v3 − u3v4 u2v4 − u4v2 u3v2 − u2v3

u3v4 − u4v3 0 u4v1 − u1v4 u1v3 − u3v1

u4v2 − u2v4 u1v4 − u4v1 0 u2v1 − u1v2

u2v3 − u3v2 u3v1 − u1v3 u1v2 − u2v1 0

 .

Idea: The point w ∈ P3 is on the dual of the line u ∧ v if (u ∧ v)(w) = 0. Recall
k〈u, v〉⊥ ⊆ ker(u ∧ v). Since n = 4 and u ∧ v has rank 2, we have equality. So k〈u, v〉⊥
corresponds to I(u ∧ v).

Idea: (u∧v)I(u∧v) = I(u∧v)(u∧v) = 0. This can be seen by multiplying the matrices
and the fact that P(u ∧ v) = 0.

Then we have the following maps:

k4 k4 k4I(u∧v) u∧v

where im (I(u ∧ v)) ⊆ ker(u ∧ v) = k〈u, v〉⊥. We have equality because I(u ∧ v) is rank 2.
We can write k〈u, v〉⊥ = k〈s, t〉 with s · u = t · u = s · v = t · v = 0. Thus im (I(u ∧ v)) =
k〈s, t〉 = im (s ∧ t). Thus I(u ∧ v) ∼ s ∧ t in P(so(4)) (tenuous, my guess is I(u ∧ v) must
be the exterior product of something because its Pfaffian is zero?), so [I(u ∧ v)] = [s ∧ t].

The idea works with the example of u = (0, 0, 0, 1) and v = (a, b, c, 1) as above. The
vectors (b,−a, 0, 0), (c, 0,−a, 0) ∈ ker(u ∧ v) and

(b,−a, 0, 0) ∧ (c, 0,−a, 0) =


0 −ac ba 0
ac 0 −a2 0
−ba a2 0 0

0 0 0 0

 ∼


0 c −b 0
−c 0 a 0
b −a 0 0
0 0 0 0

 = I(u ∧ v).

Idea: If w is on the line connecting u and v, then so is (u ∧ v)(w). This is because
(u ∧ v)(w) = (u · w)v − (v · w)u ∈ k〈u, v〉 ⊆ k4, which corresponds to the line that connects
u and v in P3.

Relation to Orth

The alternating trilinear function Orth is a kind of four-dimensional cross product. It can
be defined in terms of the involution I and exterior product ∧:

Orth(u, v, w) = I(u ∧ v)(w).

Three points [u], [v], [w] ∈ P3 (where u, v, w ∈ V are nonzero vectors) are colinear if and only
if Orth(u, v, w) = 0. Otherwise they space a plane in P3 represented by [Orth(u, v, w)†].

Dually, suppose ϕ, ψ, ξ ∈ V ∗ are nonzero covectors. The corresponding planes [ϕ], [ψ], [ξ] ⊆
P3 meet in a single point if and only if ϕ, ψ, ξ are linearly in dependent, in which case

[ϕ] ∩ [ψ] ∩ [ξ] = [Orth(ϕ†, ψ†, ξ†)]
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.
Note that the line that connects (a : b : c) and (d : e : f) in P2 is

(bf − ce)x+ (cd− af)y + (ae− bd)z.

This is the cross product (a, b, c)× (d, e, f) in k3.

Exterior Algebras

4.1: Lines and 2-vectors

Definition 12. An alternating bilinear form an a k-vector space V is a map B : V ×V → k
such that

• B(v, w) = −B(w, v);

• B(λ1v1 + λ2v2, w) = λ1B(v1, w) + λ2B(v2, w).

This is the skew-symmetric version of the symmetric bilinear forms we used to define
quadrics. Given a basis {v1, . . . , vn}, B is uniquely determined by the skew symmetric
matrix B(vi, vj). We can add alternating forms and multiply by scalars so they form a vec-
tor space, isomorphic to the space of the skew-symmetric n×n matrices. This has dimension
n(n− 1)/2 spanned by the basis elements Eab for a < b where Eab

ij = 0 if {a, b} 6= {i, j} and
Eab
ab = −Eab

ba = 1.

Definition 13. The second exterior power Λ2V of a finite-dimensional vector space is the
dual space of the vector space of alternating bilinear forms on V . Elements of Λ2V are called
2-vectors.

Definition 14. Given u, v ∈ V , the exterior product u ∧ v ∈ Λ2V is the linear map to k
which, on an alternating bilinear form B, takes the value

(u ∧ v)(B) = B(u, v).

This conflicts a little bit with the earlier paper. The earlier paper defines u∧ v as a function
from V to V , while this paper defines u ∧ v as a function from the space of all alternating
bilinear maps to k. Indeed, given a fixed w, the map B(u, v) = (u · w)v − (v · w)u is
an alternating bilinear map. Does the other correspondence hold or this new definition
a generalization? Perhaps the other correspondence does not hold, since the space of all
alternating bilinear maps is an n(n − 1)/2-dimensional vector space whereas V is an n-
dimensional vector space.

I do not think the correspondence moves the other way because we have

[B] [u ∧ v] k〈u, v〉 k〈w〉 = k〈u, v〉⊥duality (4)
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only when n = 3, so n(n− 1)/2 = n.
From this definition follows some basic properties:

(u ∧ v)(B) = B(u, v) = −B(v, u) = −(v ∧ u)(B)

so that
v ∧ u = −u ∧ v

and in particular u ∧ u = 0. Also

(λ1u1 + λ2u2) ∧ v = λ1(u1 ∧ v) + λ2(u2 ∧ v).

If {v1, . . . , vn} is a basis for V , then {vi ∧ vj}1≤i<j≤n is a basis for Λ2V .
This last property holds because vi ∧ vj(Eab) = Eab

ij and in fact shows that {vi ∧ vj} is
the dual basis to the basis {Eab}.

Another important property is u ∧ v = 0 if and only if v = λu for some scalar λ. This is
proven above.

It is the elements of Λ2V of the form u ∧ v which will concern us, for suppose U ⊆ V is
a 2-dimensional vector subspace and {u, v} is a basis of U . Then any other basis is of the
form {au+ bv, cu+ dv} so

(au+ bv) ∧ (cu+ dv) = (ad− bc)(u ∧ v)

and since the matrix

(
a b
c d

)
is invertible ad − bc 6= 0. It follows that the 1-dimensional

subspace of Λ2V spanned by u∧v for a basis of U is well-defined by U itself and is independent
of choice of basis. To each line in P(V ) we can therefore associate a point in P(Λ2V ).

Here Λ2V corresponds with the so(n) from earlier, and not Λ from earlier. I think I’ve
figured it out that there is a correspondence between the space of all alternating bilinear
functions and the space so(n) of skew symmetric matrices. The correspondence is each B is
represented by a matrix M ∈ so(n) such that Mij = B(vi, vj) for {vi}1≤i≤n a basis of V . To
be precise, let B be the vector space of all bilinear transformations on V . Then there is an
isomorphism B → so(n) given by B 7→ (B(vi, vj)). What is funny is that B : V × V → k
and for s ∈ so(n), s : V → V . Then we have u ∧ v which takes an input of B ∈ B and
outputs an element of k, or receives an element of V and outputs an element of V . That is
u ∧ v can be thought of as, u ∧ v : B → k or u ∧ v : V → V . The isomorphism between B
and so(n) helps this make sense. Thus we have

{u ∧ v}

so(n) B B∗ = Λ2V

6∼= 6∼=

∼= ∼=

.

s could also act V × V → k via (x, y) 7→ xT sy, which is bilinear. This should correspond
with the appropriate B, but I won’t check that.

The problem is, not every vector in Λ2V can be written as u ∧ v for vectors u, v ∈ V .
In general it is a linear combination of such expressions. The task, in order to describe the
space of lines, is to characterize such decomposable 2-vectors.

4.2 Higher exterior powers
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Definition 15. An alternating multilinear form of degree p on a vector space V is a map
M : V p → k such that

• For all σ ∈ Sp, M(u1, . . . , up) = sgn(σ)M
(
uσ(1), . . . , uσ(p)

)
;

• M(λ1v1 + λ2v2, u2, . . . , up) = λ1M(v1, u2, . . . , up) + λ2M(v2, u2, . . . , up)

Example: Let u1, . . . , un be column vectors. Then

M(u1, . . . , un) = det(u1u2 · · ·un)

is an alternating multilinear form of degree n.

The set of all alternating multilinear forms on V is a vector space, and M is unique
minamined by the values

M(vi1 , vi2 , . . . , vip)

for a basis {v1, . . . , vn}. But the alternating property allows us to change the order as long
as we multiply by −1 for each transposition. This means that M is uniquely determined by
the values of indices for

i1 < i2 < · · · < ip.

The number of these is the number of p-element subsets of [n], i.e.

(
n

p

)
, so this is the

dimension of the space of such forms. In particular if p > n this space is zero. We define
analogous constructions to those above for a pair of vectors:

Definition 16. The pth exterior power ΛpV of a finite dimensional vector space is the dual
space of the vector space of alternating multilinear forms of degree p on V . The elements of
ΛpV are called p-vectors.

and

Definition 17. Given u1, . . . , up ∈ V , the exterior product u1 ∧ u2 ∧ · · · ∧ up ∈ ΛpV is the
linear map to F which, on an alternating multilinear form M takes the value

(u1 ∧ · · · ∧ up)(M) = M(u1, . . . , up).

The exterior product u1 ∧ · · · ∧ up has three defining properties:

• it is linear in each variable ui separately

• interchanging two variables changes the sign of the product

• if two variables are the same the exterior product vanishes.

We have a useful generalization of the earlier proposition:

Proposition 16. The exterior product u1∧· · ·∧up of p vectors ui ∈ V vanishes if and only
if the vectors are linearly dependent.
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The exterior powers ΛpV have natural properties with respect to linear transformations:
given a linear transformation T : V → W , and an alternating multilinear form M on W , we
can define an induced one T ∗M on V by

T ∗M(v1, . . . , vp) = M(Tv1, . . . , T vp)

and this defines a dual linear map

ΛpT : ΛpV → ΛpW

with the property that

ΛpT (v1 ∧ · · · ∧ vp) = Tv1 ∧ · · · ∧ Tvp.

One such map is very familiar: take p = n, so that ΛnV is one-dimensional and spanned by
v1 ∧ · · · ∧ vn for a basis {v1, . . . , vn}. A linear transformation from a 1-dimensional vector
space to itself is just multiplication by a scalar, so ΛnT is some scalar in the field. In fact it
is the determinant of T . To see this, observe that

ΛnT (v1 ∧ · · · ∧ vn) = Tv1 ∧ · · · ∧ Tvn

and the right hand side can be written using the matrix Tij of T as∑
i1,...,in

Ti11vi1 ∧ · · · ∧ Tinnvin =
∑
i1,...,in

Ti11 · · ·Tinnv1i ∧ · · · ∧ vin .

Each of the terms vanishes if any two of i1, . . . , in are equal by the property of the exterior
product, so we need only consider the case where (i1, . . . , in) is a permutation of (1, . . . , n).

We now have vector spaces ΛpV of dimension

(
n

p

)
naturally associated to V . The space

Λ1V is by definition the dual space of the space of linear functions on V , so Λ1V = V ∗∗ ∼=
V and by convention we set Λ0V = k. Given p vectors v1, . . . , vp ∈ V we also have a
corresponding vector v1 ∧ · · · ∧ vp ∈ ΛpV and the notation suggests that there should be a
product so that we can remove the brackets:

(u1 ∧ · · · ∧ up) ∧ (v1 ∧ · · · ∧ vq) = u1 ∧ · · · ∧ up ∧ v1 ∧ · · · ∧ vq.

And indeed there is. So suppose a ∈ ΛpV, b ∈ ΛqV , we want to define a ∧ b ∈ Λp+qV . Now
for fixed vectors u1, . . . , up ∈ V ,

M(u1, . . . , up, v1, . . . , vq)

is an alternating q-linear function of v1, . . . , vq, so if

b =
∑

1≤j1<···<jq≤p+q

λj1···jqvj1 ∧ · · · ∧ vjq

then ∑
j1<···<jq

λj1···jqM(u1, . . . , up, vj1 , . . . , vjq)

11
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only depends on b and not on the particular way it is written in terms of a basis {v1 . . . , vn}.
Similarly, if

a =
∑

1≤i1<···<ip≤p+q

µi1···ipui1 ∧ · · · ∧ uip

then ∑
i1<···<ip

µi1···ipM(ui1 , . . . , uip , v1, . . . , vq)

depends on a. We can therefore unambiguously define a ∧ b by its value on an alternating
p+ q-form M as

(a ∧ b)(M) =
∑

i1<···<ip;j1<···<jq

µi1···ipλj1···jqM(ui1 , . . . , uip , vj1 , . . . , vjq).

The product just involves linearity and removing the brackets.

Example 1. Suppose a = v1 + v2, b = v1 ∧ v3 − v3 ∧ v2, with v1, v2, v3 ∈ V . Then

a ∧ b = (v1 + v2) ∧ (v1 ∧ v3 − v3 ∧ v2)

= v1 ∧ v1 ∧ v3 − v1 ∧ v3 ∧ v2 + v2 ∧ v1 ∧ v3 − v2 ∧ v3 ∧ v2

= −v1 ∧ v3 ∧ v2 + v2 ∧ v1 ∧ v3

= v1 ∧ v2 ∧ v3 − v1 ∧ v2 ∧ v3 = 0

where we have used the basic rules that a repeated vector from V in an exterior product
gives zero, and the transposition of two vectors changes the sign.

Note that

u1 ∧ · · · ∧ up ∧ v1 ∧ · · · ∧ vq = (−1)pv1 ∧ u1 ∧ · · · ∧ up ∧ v2 ∧ · · · ∧ vq

because we have to interchange v1 with each of the p ui’s to bring it to the front, and then
repeating

u1 ∧ · · · ∧ up ∧ v1 ∧ · · · ∧ vq = (−1)pqv1 ∧ · · · ∧ vq ∧ u1 ∧ · · · ∧ up.

This extends by linearity to all a ∈ ΛpV, b ∈ ΛqV . We then have the basic properties of the
exterior product:

• a ∧ (b+ c) = a ∧ b+ a ∧ c

• (a ∧ b) ∧ c = a ∧ (b ∧ c)

• a ∧ b = (−1)pqb ∧ a if a ∈ ΛpV, b ∈ ΛqV .

What we have done may seem rather formal, but it has many concrete applications. For
example, if a = x∧ y, then a∧ a = x∧ y ∧x∧ y = 0 because x ∈ V = Λ1V is repeated. So it
is much easier to determine that a = v1∧ v2 + v3∧ v4 (v1, v2, v3, v4 ∈ V linearly independent)
is not decomposable:

(v1 ∧ v2 + v3 ∧ v4) ∧ (v1 ∧ v2 + v3 ∧ v4) = 2v1 ∧ v2 ∧ v3 ∧ v4 6= 0.

12
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4.3: Decomposable 2-vectors
A line in P(V ) defines a point in P(Λ2V ) defined by a decomposable 2-vector

a = x ∧ y.

We need to characterize algebraically this decomposability, and the following theorem does
just that:

Theorem 17. Let a ∈ Λ2V be a non-zero element. Then a is decomposable if and only if
a ∧ a = 0 ∈ Λ4V .

Proof. (⇒) If a = x ∧ y for two vectors x and y, then

a ∧ a = x ∧ y ∧ x ∧ y = 0

because of the repeated factor x (or y).
(⇐) We prove the converse by induction on the dimension of V . If dimV = 0, 1 then

Λ2V = 0, so the first case is dimV = 2. In this case dim Λ2V = 1 and v1 ∧ v2 is a nonzero
element if {v1, v2} is a basis for V , so any a is decomposable.

We consider the case dimV = 3 separately now. Given a non-zero a ∈ Λ2V , define
A : V → Λ3V by

A(v) = a ∧ v.
Since dim Λ3V = 1, dim kerA ≥ 2, so let u1, u2 be linearly independent vectors in the kernel
and extend to a basis u1, u2, u3 of V . Then write

a = λ1u2 ∧ u3 + λ2u3 ∧ u1 + λ3u1 ∧ u2.

Now by definition 0 = a ∧ u1 = λ1u2 ∧ u3 ∧ u1 so λ1 = 0 and similarly 0 = a ∧ u2 implies
λ2 = 0. It follows that a = λ3u1 ∧ u2, which is decomposable.

Now assume inductively that the theorem is true for dimV ≤ n−1 and consider the case
dimV = n. Using a basis v1, . . . , vn, write

a =
n∑

1≤i<j

aijvi ∧ vj

=

(
n−1∑
i=1

ainvi

)
∧ vn +

n−1∑
1≤i<j

aijvi ∧ vj

= u ∧ vn + a′

where u ∈ U = k〈v1, . . . , vn−1〉 and a′ ∈ Λ2U .
Now

0 = a ∧ a = (u ∧ vn + a′) ∧ (u ∧ vn + a′) = 2u ∧ a′ ∧ vn + a′ ∧ a′.
But vn doesn’t appear in the expansion of u ∧ a′ or a′ ∧ a′, so we separately obtain

u ∧ a′ = 0, a′ ∧ a′ = 0.

13
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By induction a′ ∧ a′ = 0 implies a′ = u1 ∧ u2 and so the earlier equation reads

u ∧ u1 ∧ u2 = 0

which means that there is a linear relation

λu+ µ1u1 + µ2u2 = 0.

If λ = 0, then u1 and u2 are linearly dependent so a′ = u1 ∧ u2 = 0. This means that
a = u ∧ vn and is therefore decomposable. If λ 6= 0, u = λ1u1 + λ2u2, so

a = λ1u1 ∧ vn + λ2u2 ∧ vn + u1 ∧ u2

and this is the 3-dimensional case which is always decomposable as shown above. We con-
clude that a in each case is decomposable.

4.4 The Klein quadric:
The first case where we can apply Theorem 17 is when dimV = 4, to describe the

projective lines in the 3-dimensional space P(V ). In this case dim Λ4V = 1 with a basis
vector v0 ∧ v1 ∧ v2 ∧ v3 if V is given the basis v0, . . . , v3.

For a ∈ Λ2V we write

a = λ1v0 ∧ v1 + λ2v0 ∧ v2 + λ3v0 ∧ v3 + µ1v2 ∧ v3 + µ2v3 ∧ v1 + µ3v1 ∧ v2

and then a ∧ a = B(a, a)v0 ∧ v1 ∧ v2 ∧ v3 where

B(a, a) = 2(λ1µ1 + λ2µ2 + λ3µ3). (2)

This is a non-degenerate quadratic form, and so B(a, a) = 0 defines a nonsingular quadric
Q ⊆ P(Λ2V ). Moreover, any other choice of basis rescales B by a non-zero constant and so
Q is well-defined in projective space.

We see then that a line ` ⊆ P(V ) defines a decomposable 2-vector a = x ∧ y, unique up
to a scalar and since a∧ a = 0, it defines a point L ∈ Q ⊆ P(Λ2V ). Conversely, Theorem 17
tells us that every point in Q is represented by a decomposable 2-vector. Hence

Proposition 18. There is a one-to-one correspondence ` ←→ L between lines ` in a 3-
dimensional projective space P(V ) and points L in the 4-dimensional quadric Q ⊆ P(Λ2V ).

It was Felix Klein, building on the work of his supervisor Julius Plücker, who first described
this in detail and Q is usually called the Klein quadric. The equation of the quadric in the
form (2) shows that there are linear subspaces inside it of maximal dimension 2 whatever the
field. The linear subspaces all relate to intersection properties of lines in P(V ). For example:

Proposition 19. Two lines `1, `2 ⊆ P(V ) intersect if and only if the line joining the two
corresponding points L1, L2 ∈ Q lies entirely in Q.

14
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Proof. (⇒) Let U1, U2 ⊆ V be the two dimensional subspaces of V defined by `1, `2. Suppose
the lines intersect in X, with representative vector u ∈ V . Then extend to bases {u, u1}
for U1 and {u, u2} for U2. The line in P(Λ2V ) joining L1 and L2 is then P(W ) where W is
spanned by u ∧ u1 and u ∧ u2.

Any 2-vector in W is thus of the form

λ1u ∧ u1 + λ2u ∧ u2 = u ∧ (λ1u1 + λ2u2)

which is decomposable and so represents a point in Q.
(⇐) Conversely, if the lines do not intersect, U1 ∩ U2 = {0}, so V = U1 ⊕ U2. In this

case choose bases {u1, v1} of U1 and {u2, v2} of U2. Then {u1, v1, u2, v2} is a basis of V and
in particular u1 ∧ v1 ∧ u2 ∧ v2 6= 0. A point on the line joining L1 and L2 is now represented
by a = λ1u1 ∧ v1 + λ2u2 ∧ v2 so that

a ∧ a = 2λ1λ2u1 ∧ v1 ∧ u2 ∧ v2

which vanishes only if λ1 or λ2 are zero. Thus the line only meets Q at the points L1 and
L2.

Now fix a point X ∈ P(V ) and look at the set of lines passing through this point:

Proposition 20. The set of lines ` ⊆ P(V ) passing through a fixed point X ∈ P(V )
corresponds to the set of points L ∈ Q such lie in a fixed plane contained in Q.

Proof. Let x be a representative vector for X. The line P(U) passes through X if and only
if x ∈ U , so P(U) is represented in the Klein quadric by a 2-vector of the form

x ∧ u.

Extend x to a basis {x, v1, v2, v3} of V , then any decomposable 2-vector of the form x ∧ y
can be written as

x ∧ (µx+ λ1v1 + λ2v2 + λ3v3) = λ1x ∧ v1 + λ2x ∧ v2 + λ3x ∧ v3.

Thus any line passing through X is represented by a 2-vector in the 3-dimensional space of
decomposables spanned by x∧ v1, x∧ v2, x∧ v3, which is a projective plane in Q. Conversely
any point in this plane defines a line in P(V ) through X.

A plane in Q defined by a point X ∈ P(V ) like this is called an α-plane. There are other
planes in Q:

Proposition 21. Let P(W ) ⊆ P(V ) be a plane. The set of lines ` ⊆ P(W ) corresponds to
the set of points L ∈ Q which lie in a fixed plane contained in Q.

A plane of this type contained in Q is called a β-plane.

Proof. We just use duality here: if U ⊆ V is 2-dimensional, then its annihilator U0 ⊆ V ∗ is
4 − 2 = 2-dimensional, so there is a one-to-one correspondence between lines in P(V ) and
lines in P(V ∗). A point in Q therefore defines a line in either the projective space or its
dual. Now the dual of the set of lines passing through a point is the set of lines lying in a
(hyper)-plane. So applying Proposition 20 to P(V ∗) gives the result.

15
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In fact, there are no more planes:

Proposition 22. Any plane in the Klein quadric Q is either an α-plane or a β-plane.

Proof. Take a plane in Q and three non-collinear points L1, L2, L3 on it. We get three lines
`1, `2, `3 ⊆ P(V ). Since the line joining L1 to L2 lies in the plane and hence in Q, it follows
from Proposition 19 that each pair of `1, `2, `3 intersect. There are two possibilities:

• the three lines form a pencil;

• the three lines meet at three distinct points.

In the first case the three lines pass through a single point and so L1, L2, L3 lie in an α-plane.
But this must be the original plane since the three representative vectors for L1, L2, L3 are
linearly independent as the points are not collinear.

In the second case, if u1, u2, u3 are representative vectors for the three points of intersec-
tion of `1, `2, `3, then L1, L2, L3 are represented by u2 ∧ u3, u3 ∧ u1, u1 ∧ u2. A general point
on the plane is then given by

λ1u2 ∧ u3 + λ2u3 ∧ u1 + λ3u1 ∧ u2

which is a general element of Λ2U where U is spanned by u1, u2, u3. Thus `1, `2, `3 all lie in
the plane P(U) ⊆ P(V ).

The existence of these two families of linear subspaces of maximal dimension is characteristic
of even-dimensional quadrics − it is the generalization of the two familites of lines on the
“cooling tower” quadric surface. In the case of the Klein quadric, two different α-planes
intersect in a point, since there is a unique line joining two points. Similarly (and by duality)
two β planes meet in a point. An α-plane and a β-plane in general have empty intersection:
if X is a point and π a plane with X /∈ π, there is no line in π with passes through X. If
X ∈ π, then the intersection is a line.

Plücker Embedding

The Plücker embedding over the field k is the map ι defined by

ι : Gr(r, kn)→ P(Λrkn)

k〈v1, . . . , vr〉 7→ [v1 ∧ · · · ∧ vr],

where Gr(r, kn) is the Grassmannian, i.e., the space of all r-dimensional subspaces of the
n-dimensional vector space kn.

This is an isomrophism from the Grassmannian to the image of ι, which is a projective
variety. This variety can be completely characterized as an intersection of quadrics, each
coming from a relation on the Plücker (or Grassmann) coordinates that derives from linear
algebra.

The embedding of the Grassmannian satisfies some very simple quadratic relations called
the Plücker relations. These show that the Grassmannian embeds as an algebraic subva-
riety of P(ΛrV ) and give another method of constructing the Grassmannian. To state the
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Plücker relations, let W be the r-dimensional subspace spanned by the basis of row vec-
tors {w1, . . . , wr}. Let U be the r × n matrix of homogeneous coordinates whose rows are
{w1, . . . , wr} and let {W1, . . . ,Wn} be the corresponding column vectors. For any ordered
sequence 1 ≤ i1 < · · · < ir ≤ n of positive integers, let Wi1,...,ir be the determinant of the
r × r minor with the columns (Wi1 , . . . ,Wir). Then {Wi1,...,ir} are the Plücker coordinates
of the element U of the Grassmannian. They are the linear coordinates of the image ι(W )
of W under the Plücker map, relative to the standard basis in the exterior power ΛrV .

For any two ordered sequences i1 < · · · < ir−1 and j1 < · · · < jr+1 of positive integers
1 ≤ i`, jm ≤ n, the following homogeneous quadratics determine the image of Gr(r, kn) under
the Plücker map:

r+1∑
`=1

(−1)`Wi1,...,ir−1,j`Wj1,...,j`,...,jr+1 = 0.

For example, when dimV = 4 and r = 2, we have the Klein quadric determined by the
equation W12W34−W13W24 +W14W23. In general, however, many more equations are needed
to carve the image of the Grassmannian under the Plücker embedding.

Note dimGr(r, kn) = r(n− r) <
(
n

r

)
− 1 = dimP(Λrkn).
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