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Definition 1.1. A Steiner triple system is an ordered pair (S,7) where S is a finite set
of points or symbols, and 7" is a set of 3-element subsets of S called triples, such that each
pair of distinct elements of S occurs together in exactly one triple of T'.

One example is the Fano plane. An equivalent way of thinking of a Steiner triple system is
as a partitioning of the edges of the complete graph K|g into triangles.

Theorem 1.1.3. A Steiner triple system of order v exists if and only if v =1 or 3 mod 6.

Proof. 1f (S,T) is a Steiner triple system of order v, the triple {a, b, ¢} contains exactly three
two-element subsets: {a,b}, {a,c}, and {b,c}. Note that S itself contains (3)-two element
subsets. Since every pair much exist within one triple in 7', we must have

| = v(v6— 1)'
For any x € S, define the set T'(z) = {t \ {z} : © € t € T'}. Then T(x) partitions S \ {z}
into two-element subsets. This is because every s € S\ {z} is in exactly one triple alongside
x, so if y € S is such that {z,y,s} € T, then {y, s} is the only pair in 7'(x) containing s.
Thus v — 1 is even, so v must be odd. Therefore v =1 or 3 or 5 mod 6. However, %
is never an integer for v =5 mod 6. This is because 5(5 —1) =20 =2 mod 6 # 0 mod 6.

So we are left with v =1 or 3 mod 6. O

And so

It remains to show there exists a Steiner system for every such number. We will see this
with various construction methods.

Exercise 1.1.4. Let S be a finite set of size v and let T" be a set of triples of S satisfying
1. each pair of distinct elements of S belongs to at least one triple in 7', and
2. T <v(v—1)/6.

Show that (5,7 is a Steiner triple system.

Proof. Since |T'| < v(v — 1)/6, we know that 3|T'| < (3). For each pair {z,y} € P(S,2),
denote by Ny, ,, the number of triples ¢t € T that satisfy {z,y} C t. Let N be the sum
total of the number of times each pair is present in a triple of 7. Because of property (a),
N > (g) But because each triple always contains exactly three pairs, we have N = 3|T|.
Therefore N = 3|T| = (3).

Suppose there existed z # w € S such that {z,y,2} = {z,y,w}. Then N, ,, > 1. But
then N > (3), which contradicts our earlier result. So we must have N, ,; = 1, and so we

have a Steiner triple system.
O
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Definition 1.2. A latin square of order n is an n X n array, each cell of which contains
exactly one of the numbers {1,...,n} and each column and row of which contains exactly
one of each of the numbers {1,...,n}. A quasigroup of order n is a pair (@), o) where @ is
a set of n elements and - o-: Q) x Q — @ is a binary operation such that for every pair of
elements a,b € () the equations a o x = b and y o a = b have unique solutions.

A latin square and a quasigroup are essentially the same thing. The former is merely the
multiplication table of the latter.

The Bose Construction (v =3 mod 6): Let v = 6n + 3 and let () be an idempotent
quasigroup of order 2n + 1. Let S = @ X {a, b, c} and define T to contain the following two

types:
1. For 1 <i<2n+1, {(i,a), (i,b), (i,c)} € T.

2. For 1 <i<j<2n+1{(i,a) (j,a),(io]b)},{(ib),(4b),(ioj,c)},{(i,c), (jc), (io
j,a)} €T.

Then (S,T) is a Steiner triple system. This can be proven by applying Exercise 1.1.4.

Proof. First we will show that |7 < v(v —1)/6. Recall now that v = 6n + 3. The triples of
Type 1 can be counted as 2n+ 1. The triples of Type 2 can be counted as 3(2n+1)(2n)/2 =
3(2n* + n) = 6n® + 3n. Therefore |T| = 6n* + 5n + 1. Note here that v(v — 1)/6 =
(6n + 3)(6n +2)/6 = (36n* + 30n + 6)/6 = 6n? + 5n + 1. So in fact |T'| = v(v — 1) /6.

Next we need to demonstrate that every pair is in at least one triple of T'. Let {(4,p), (7,q)}
be a pair, where i,j € @ and p,q € {a,b,c}. First suppose i = j. Then {(i,p), (j,q)} C
{(i,a), (i,b), (i,c)}, the Type 1 triple.

Now suppose p = ¢. Then {(4,p), (,¢)} € {(i,p), (4,p), (i 0 j,p + 1)}, the Type 2 triple.

Finally, suppose i # 7 and p # q. Then either p = ¢+ 1 or ¢ = p+ 1. First suppose
q = p+1. Then we want to show there is a k € @ such that {(i,p), (k,p), (j,q=p+1)} € T.
The element k must satisfy i 0 k = j. Because @) is a quasigroup, this equation has a unique
solution k, so we are done. NOTE: it is impossible that k£ = ¢ because () is idempotent.

The same thing goes for the case p = ¢ + 1. Therefore every pair is in at least one triple
in 7. By Exercise 1.1.4, (S,T) is thus a Steiner triple system. O

Example JK1. Let us construct a Steiner triple system of nine elements. First let us take
the quasigroup

w| || o
DO QO = =
—|ho| ol o
w| =] no| w
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Then the Bose Steiner triple system (Q X {a, b, c},T) contains |T| = 12 triples.

{(1,a), (1,0), (1, 0)},{(2,0),(2,0), (2,¢)},{(3, ), (3,0), (3, ¢)},
{(1,a),(2,a),(3,0)}, {(1,0),(2,0), 3, )}, {(L,¢), (2, ¢), (3,a)},
{(L,a),(3,0),(2,0)},{(1,0), (3,0), (2,¢)}, {(L, ¢), (3,¢), (2, a) },
{(2,a),3,a), (1,0)},{(2,0),(3,0), (1,¢)}, {(2,¢), (3,¢), (1, a)}.

This can be expressed in Griinbaum’s configuration notation as a (94, 123), because there
are 9 points, 4 “lines” per point, 12 “lines” and 3 points per “line.” This is the same kind of
configuration as that formed by the nine flex points of an elliptic curve.

So the Bose method can form a ([6n + 33,41, [6n° + 5n + 1]3)-configuration. So we can
make a (157, 353)-configuration, a (2119, 703)-configuration, a (27,3, 1173)-configuration, and
a (3316, 1763)-configuration etc. An (8149, 10803)-configuration etc.

Example JK2. Let us construct a Steiner triple system of fifteen elements. First let us
take the quasigroup

o|1]12|3]4]5
111154132
215141321
Q_343215
413121154
2121543

Note that this quasigroup is commutative but not idempotent! Does it fail to produce a
Steiner triple system? Then the Bose construction yields (Q x {a, b, ¢}, T) contains |T'| = 35
triples. The five Type 1 triples:

{(1,a), (1,0), (L, )},
{(2,a),(2,0), (2,0)},
{(3,a),(3,0),(3, )},
{(4,a),(4,0), (4, )},
{(5,a),(5,0), (5, )},
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and the thirty Type 2 triples:

{(1,a),(2,a),(5,0)}, {(1,0),(2,0), (5, )}, {(L, ¢), (2, ¢), (5,0)},
{(1,a),(3,a), (4,0)}, {(1,0), (3,0), (4,¢)}, {(L, ¢), (3, ¢), (4, 0)},
{(L,a),(4,0),(3,0)}, {(1,0), (4,), (3, )}, {(L, ¢), (4, ¢), (3, a) },
{(1,a),(5,a),(2,0)}, {(1,0), (5,0), (2,0)}, {(L, ¢), (5,¢), (2,0)},
{(2,0),(3,a),(3,0)},{(2,0), (3,0), 3,¢)},{(2,¢), (3, ), (3,0)},
{(2,a),(4,0),(2,0)},{(2,0), (4,), (2,0)},{(2,¢), (4, ¢), (2, a) },
{(2,a),(5,a), (1,0)},{(2,0), (5,0), (1,¢)},{(2,¢), (5, ¢), (1, a)},
{3,a), (4,a), (1,0)},{(3,0), (4,0), (1,¢)},{(3, ¢), (4, ¢), (1, a)},
{3,a),(5,0),(5,0)},{(3,0), (5,0), (5,0)},{(3, ¢), (5,¢), (5, a) },
{(4,a),(5,a), (4,0)},{(4,0),(5,0), (4, )}, {(4, ), (5,¢), (4, )}

This fails to be a Steiner triple system because for example the pair {(5, a), (5,b)} appears in
the triple {(5,a), (5,b),(5,¢)} of Type 1 and the triple {(3,a), (5,a), (5,0)} of Type 2. This
ultimately results from the non-idempotent nature of 305 = 5.

Definition 1.3.1. A quasigroup of even order 2n is half-idempotent if i o ¢ = ¢ for all
i<n/2andioi=1i—n/2foralli>n/2

Note that for every odd n, you can make a commutative idempotent quasigroup out
of Z/nZ by ioj = 5L, since 2 € (Z/nZ)*. For even 2n, you can partition Z/2nZ into
A={0,...,n—1} and B={n,...,2n — 1 = —1}. Then for the equation y = 2z, denote

by A, the solution z in the set A, and denote by B, the solution z in the set B. Then
o Aigj i+ j is even
tog = S
Biij—1 i+ jisodd
is a half-idempotent commutative quasigroup.
The Skolem Construction (v =1 mod 6): Let @ be a half-idempotent commutative

quasigroup of order 2n, where @ = {1,...,2n}. Define S = {oo} U (Q x {a,b,c}). Define T
as following three types:

1. For 1 <i<mn, {(i,a), (i,b), (i,c)} € T.
2. For 1 <i<n, {o0,(n+1i,a),(i,b)},{co,(n+1,b),(i,c)}, {oo, (n+1,c),(i,a)} € T.
3. For 1 < i < j < 2n, {(i,a),(ja), (i 0 5,0)},{(2,),(4,0), (i © j, )}, {(i, ¢), (4, ), (i
j,a)} €T.
Then (S,T) is a Steiner triple system.

Proof. Let us again turn to Exercise 1.1.4. Counting up the triples of T, we get n triples of
Type 1, 3n triples of Type 2, and 3%2n(2n—1)/2 = 6n* — 3n triples of Type 3. Adding these
up, we get |T'| = 6n% +n. Note that with v = 6n+ 1, we have v(v —1)/6 = (6n+1)(6n)/6 =
6n? +n. And so |T| = v(v —1)/6.

Next, we must show that every pair is present in at least one triple of T

4
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e First let us consider pairs of the form {(,p), (j,q)} where i,j € @ and p, q € {a,b, c}.
If i = j < n, then {(7,p), (7,q9)} is in a triple of Type 1.

o If : = j > n, then write ¢ = j = k + n for some k € (). So we wish to find a triple
of T containing {(k + n,p), (k + n,q)}. Suppose that ¢ = p + 1. Then we wish to
find an ¢ € @ such that {(¢,p), (k + n,p),(k+n,g =p+ 1)} € T. This is a Type 3
triple. This is true if £ o (k + n) = k + n. Because @ is a quasigroup, ¢ exists and
is unique. So the pair {(i,p), (7, q)} is in at least one triple. The same goes for if
p =q+ 1. (NOTE: importantly, ¢ # k + n because in a half-idempotent quasigroup
(k+n)o(k+n)=k#k+n.)

e Now suppose p = ¢. Then {(4, p), (j,p)} is in the Type 3 triple {(i, p), (4, p), (ioj, p+1)}.

e Now suppose ¢ # j and p # ¢. Suppose j =n+ i and p = g + 1. then {(4,p), (j,¢)} is
in the Type 2 triple {o0, (4, 9), (i,p)}.

e Now suppose j = n+i and ¢ = p+ 1. Then {(i,p),(j,q)} is in the Type 3 triple
{(i,p), (z,p), (j,q)} where x solves i o x = j. Note it is impossible that z = i because
104 =1 since ¢ < n and @ is half-idempotent.

e Now suppose i # j do not satisfy |i — j| = n and p # ¢q. Suppose ¢ = p + 1. Then we
want to find an = € @ such that {(7,p), (z,p), (j,q)} is a Type 3 triple. Then iox = j.

0 2<n
It is impossible that x = ¢, because i — (ioi) = .~ . The former case contradicts
n ot>n
i # 7 and the latter case contradicts |i — j| # n. Thus z truly provides us with a Type
3 triple.

e Finally, consider the pair {oo, (i,p)}. If i < n, then {oo, (i,p),(n+1i,p—1)} is a Type
2 triple and if ¢ > n then {oo, (¢,p), (i —n,p+ 1)} is a Type 2 triple.

Those are all the possible pairs!!! They are all in some kind of triple in T', so by Exercise
1.1.4, we are done!!! [

So this is a method of constructing a ([6n + 1]3,], [6n* + n]s)-configuration, I suppose.
We can make a (73,73), a (13¢,263), (199,573), a (2512,1003) etc.

Example JK3. Consider the half-idempotent commutative quasigroup () represented by
1 2 3

. Then we can construct the (134,263) Steiner triple system on

4
) 2
the matrix 3
1

3
1
4

N =~ —

S = {00} U(Q % {a,b,c}) has two triples of Type 1:
{(1,a),(1,),(1,0)},{(2,0),(2,0),(2,0)},

six triples of Type 2:

{00, (3,a), (1,0)},{00, (3,0), (1,¢)}, {00, (3,¢), (1,a)},
{00, (4,a),(2,0)},{00, (4,0), (2, ¢)}, {00, (4,¢), (2,a)},

Y
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and eighteen triples of Type 3:

{(1,a),(2,a), (4,0)}, {(1,0),(2,0), (4, )}, {
{(1,a),(3,a),(2,0)}, {(1,0), (3,0), (2, )}, {
{(1,a), (4,a),(3,0)}, {(1,0), (4,0), (3, )}, {
{(2,a),(3,a),(3,0)},{(2,0),(3,0), (3,¢)}, {
{(2,a),(4,a), (1,0)},{(2,0), (4,0), (1,¢)}, {
{3,a),(4,0),(4,0)},{(3,0), (4,b), (4,0)}, {

Pairwise Balanced Designs There is no Steiner triple system of order 6n + 5, but we can

generalize the concept as a pairwise balanced design to approximate.

Definition 1.4.1. A pairwise balanced design is a set of elements S together with set
of blocks B C 2° such that every pair of elements of S is in exactly one block in B. (That
is, it is like a Steiner triple system without the requirement that all the blocks are size 3, or

indeed all the same size at all!)

Example 1.4.1. S ={1,2,...,11} and B contains the following 16 blocks:

{1,2,3,4,5}
{1,6,7}
{1,8,9}

{1,10, 11}
{2,6,9}
{2,7,11}
{2,8,10}
{3,6,11}
{3,7,8}
{3,9,10}
{4,6,10}
{4,7,9}
{4,8,11}
{5,6,8}
{5,7,10}
{5,9,11}

Construction not recorded. Quasigroups with holes and Steiner triple systems:
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Let Q@ = {1,2,...,2n} and let H = {{1,2},{3,4},...,{2n — 1,2n}}. In what follows,
the two-element subsets {2i — 1,2i} are called holes. A quasigroup @ with holes H is a
quasigroup (@, o) of order 2n in which for each h € H, (h, o) is a subquasigroup of (@, o).

1 25 6 7 8 3 4
2187 3 46 5
5 8 34 2 7 16
6 74 3 8 1 5 2
73 2 8 5 6 41
8 4 716 5 2 3
36 1 5 4 2 78
4 56 21387

Exercise 1.5.10. Let ({1,2}, 0;) be any quasigroup of order 2 (there are two of them), and
let (@, 02) be an idempotent quasigroup of order 2n+1 (for example, aob = ‘IT“’ mod 2n+1,
which always exists since 2 is a unit mod 2n + 1).

Let S = {1,2} x Q. Define a binary operation on S by (a,b)®(c,d) = (aoy¢,boad). Then
(S,®) is a commutative quasigroup of order 4n + 2 with holes H = {{(1,14), (2,7)} : i € Q}.

Proof. The fact that S is a commutative quasigroup is immediate as both {1,2} and @ are
commutative quasigroups. Then note that (1,7)® (1,7) = (101 1,4), (1,7) ®(2,i) = (101 2,1),
(2,i)®(1,7) = (209,i) = (1012,1), and (2,7)®(2,7) = (20, 2,7), which forms a subquasigroup
since ({1,2}, o1) is a quasigroup.

Maybe I want to show that if ) is a quasigroup and with holes H of size 2 and h,h' € H
with hNh' # &, then h = I’. Then (h, o) is a quasigroup and (h/, o) is a quasigroup. Then is
(hN 1K, o) a quasigroup? Not necessarily. Well, let a € hN A/, so h = {a,b} and h' = {a,b'}.
Then

o a b
a aoa aob
b boa bob
is a quasigroup and
o a v
a aoa aolb
b boa bolb

is a quasigroup. In order for both of these to be true, aoca =a. Thusaob=boa = b and
aob=boa=0andbob=100b =a. So we have

o a b
a a b
b b a
and
o a UV
a a UV
Vb oa
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Then
o a b ¥V
a a bV
b b a x
b b x a
Actually my claim is not true! For example, in
o1 2 3 4
112 3 4
2 214 31,
33 41 2
4 4 3 2 1

the number 1 forms a subquasigroup with 2, 3, and 4, so the holes are {1,2}, {1,3}, and

{1,4}.
It could be the definition of holes requires a pairwise partition of the quasigroup.
Whatever... QED or something. O

BASICALLY BASICALLY BASICALLY Exercise 1.5.10 is all about taking an idempotent
commutative 2n 4+ 1 quasigroup and basically duplicating every entry as its own fucking
individual 2 x 2 quasigroup, like so

zﬁgg o 1 2 o 3 4 o 5 6
Q= JA=|1 1 2],B=1|3 3 4],C=1|5 5 6
B ¢ B A 2 21 4 4 3 6 6 5
C B A C
and so

o1 2 3 4 5 6

1125 6 3 4

2 216 5 4 3

Q=13 56341 2

4 6 54 3 2 1

53412 56

6 4 3 2 1 6 b5

That’s why it only works if #0Q =2 mod 4. If #Q = 0 mod 4 I suppose we can start with
a half-idempotent commutative quasigroup and doing the same sorta thing?
Let’s try it:

A D B C
|p B C A
=1Bc aD

C A DB

1 2

is a half-idempotent commutative quasigroup. Then let A = (2 1

) and I can already tell

this isn’t going to work...
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Let ({1,...,2n},0) be a commutative quasigroup with holes H. Then
1. ({oc}U({1,2,...,2n} x {a,b,c}), B) is an STS(6n + 1) where B is:

(a) for 1 <i < n,let B; contain the triples in an ST'S(7) on the symbols {co} U ({2i —
1,2i} x {a,b,c}) and B; C B, and

(b) for1 <i#j <2n,{i,j} ¢ H place the triples {(i,a), (j, a), (ioj,b)}, {(7,b), (4,b), (io
J,c)}, and {(i,¢), (4,¢), (i 0 j,a)} in B.

2. ({o01,009,003} U ({1,2,...,2n} x {a,b,c}), B") is an STS(6n + 3) where B’ replaces
(a) in 1. with:

(a) for 1 <i < nlet B’ contain the triples in an STS(9) on the symbols {oco;, 002, 003 }U
({2i — 1,2i} x {a,b,c}) in which {00y, 009,003} is a triple.

3. ({001, 009,003,004, 005} U ({1,2,...,2n} x {a,b,c}),B") is a PBD(6n + 5) with one
block of size 5 and the rest of size 3 where B” replaces (a) of 1. with

(a) for 1 <i <n B! contains the blocks in a PBD(11) on the symbols {ooy, . .., 005 }U
({20 — 1,2} x {a,b,c}) in which {ooy,...,005} is a block.

Let’s use Exercise 1.1.4 to prove that constructions 1 and 2 are indeed Steiner triple systems.

Proof. First let us start with construction 1. First we want to show that each pair is in at
least one triple. First take {oc, (2i,a)} as the pair. Then this pair is in the triple in the
Steiner triple system STS(7) on the symbols {oo} U ({2i — 1,2i} x {a,b,c}). Same for 2i — 1
and b and c.

Now let us consider the pair {(i,a), (j,a)}. First, if {i,j} € H then coU ({4, 7} x {a, b, c})
forms an STS(7) and so {(i,a),(j,a)} is in one of those triples. Now if {7, j} is not a hole,
then this pair is in the triple {(¢, a), (j, a), (i07,b)}. (Same for b and c¢.) Now let us consider
the pair {(i,a), (j,b)} where {i,j} is not a hole. Then there is a k € @ such that iok = j
and so {(7,a), (k,a), (j,b)} is a triple containing the pair. (Same for a, b, ¢ whatever.) Thus
every pair is in at least one triple presto!

Now we must show that the number of triples is at most (6n+1)(6n)/6 = 6n?+n. There
are 7n triples of type (a) and B(W) = 3(n)(2n — 2) = 6n® — 6n triples of type (b).
NOTE: it is not 3(%') because the type (b) triples preclude {i, j} € H, so it is B(W)
instead of 3(%)

Adding these together, we have Tn + 6n? — 6n = 6n® + n as desired. Thus Exercise 1.1.4
works to form a Steiner triple system here.

Now consider the type 2. system. First, every pair is in at least one triple. Let us
start with the pair {oo, (i,a)}. Then {oco} U ({7,7} x {a,b,c}) with {i,j} € H is an STS(9)
and so the pair {00, (i,a)} is in one of the triples there. Same for b and ¢. Then consider
{(i,a),(j,a)}. If {i,j} € H, then we have the same STS(9) as before. If {i,j} ¢ H, then
the pair {(i,a), (j,a)} is in a triple {(i,a), (j,a), (i 0 7,b)} of type (b) like in construction 1.
Same for {(i,a), (4,0)}.
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Now the fun part. We want to show there are at most (6n + 3)(6n + 2)/6 = (36n* +
30n + 6)/6 = 6n? + 5n + 1 triples. There are 12 triples in each STS(9), giving ostensibly
12n triples of type (a’). But {00y, 009,003} is a triple shared by each STS(9). So there are
really 11n + 1 triples of type (a’). There are also BW = 6n? — 6n triples of type (b).
So adding these together, we have 11n + 1 + 6n? — 6n = 6n® + 5n + 1 triples. So Exercise

1.1.4 works. O

10



