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Definition 1.1. A Steiner triple system is an ordered pair (S, T ) where S is a finite set
of points or symbols, and T is a set of 3-element subsets of S called triples, such that each
pair of distinct elements of S occurs together in exactly one triple of T .

One example is the Fano plane. An equivalent way of thinking of a Steiner triple system is
as a partitioning of the edges of the complete graph K|S| into triangles.

Theorem 1.1.3. A Steiner triple system of order v exists if and only if v ≡ 1 or 3 mod 6.

Proof. If (S, T ) is a Steiner triple system of order v, the triple {a, b, c} contains exactly three
two-element subsets: {a, b}, {a, c}, and {b, c}. Note that S itself contains

(
v
2

)
-two element

subsets. Since every pair much exist within one triple in T , we must have

3|T | =
(
v

2

)
=

v(v − 1)

2
.

And so

|T | = v(v − 1)

6
.

For any x ∈ S, define the set T (x) = {t \ {x} : x ∈ t ∈ T}. Then T (x) partitions S \ {x}
into two-element subsets. This is because every s ∈ S \ {x} is in exactly one triple alongside
x, so if y ∈ S is such that {x, y, s} ∈ T , then {y, s} is the only pair in T (x) containing s.

Thus v− 1 is even, so v must be odd. Therefore v ≡ 1 or 3 or 5 mod 6. However, v(v−1)
6

is never an integer for v ≡ 5 mod 6. This is because 5(5− 1) = 20 ≡ 2 mod 6 ̸≡ 0 mod 6.
So we are left with v ≡ 1 or 3 mod 6.

It remains to show there exists a Steiner system for every such number. We will see this
with various construction methods.

Exercise 1.1.4. Let S be a finite set of size v and let T be a set of triples of S satisfying

1. each pair of distinct elements of S belongs to at least one triple in T , and

2. |T | ≤ v(v − 1)/6.

Show that (S, T ) is a Steiner triple system.

Proof. Since |T | ≤ v(v − 1)/6, we know that 3|T | ≤
(
v
2

)
. For each pair {x, y} ∈ P(S, 2),

denote by N{x,y} the number of triples t ∈ T that satisfy {x, y} ⊆ t. Let N be the sum
total of the number of times each pair is present in a triple of T . Because of property (a),
N ≥

(
v
2

)
. But because each triple always contains exactly three pairs, we have N = 3|T |.

Therefore N = 3|T | =
(
v
2

)
.

Suppose there existed z ̸= w ∈ S such that {x, y, z} = {x, y, w}. Then N{x,y} > 1. But
then N >

(
v
2

)
, which contradicts our earlier result. So we must have N{x,y} = 1, and so we

have a Steiner triple system.
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Definition 1.2. A latin square of order n is an n × n array, each cell of which contains
exactly one of the numbers {1, . . . , n} and each column and row of which contains exactly
one of each of the numbers {1, . . . , n}. A quasigroup of order n is a pair (Q, ◦) where Q is
a set of n elements and · ◦ · : Q × Q → Q is a binary operation such that for every pair of
elements a, b ∈ Q the equations a ◦ x = b and y ◦ a = b have unique solutions.

A latin square and a quasigroup are essentially the same thing. The former is merely the
multiplication table of the latter.

The Bose Construction (v ≡ 3 mod 6): Let v = 6n+ 3 and let Q be an idempotent
quasigroup of order 2n+ 1. Let S = Q× {a, b, c} and define T to contain the following two
types:

1. For 1 ≤ i ≤ 2n+ 1, {(i, a), (i, b), (i, c)} ∈ T .

2. For 1 ≤ i < j ≤ 2n + 1 {(i, a), (j, a), (i ◦ j, b)}, {(i, b), (j, b), (i ◦ j, c)}, {(i, c), (j, c), (i ◦
j, a)} ∈ T .

Then (S, T ) is a Steiner triple system. This can be proven by applying Exercise 1.1.4.

Proof. First we will show that |T | ≤ v(v − 1)/6. Recall now that v = 6n+ 3. The triples of
Type 1 can be counted as 2n+1. The triples of Type 2 can be counted as 3(2n+1)(2n)/2 =
3(2n2 + n) = 6n2 + 3n. Therefore |T | = 6n2 + 5n + 1. Note here that v(v − 1)/6 =
(6n+ 3)(6n+ 2)/6 = (36n2 + 30n+ 6)/6 = 6n2 + 5n+ 1. So in fact |T | = v(v − 1)/6.

Next we need to demonstrate that every pair is in at least one triple of T . Let {(i, p), (j, q)}
be a pair, where i, j ∈ Q and p, q ∈ {a, b, c}. First suppose i = j. Then {(i, p), (j, q)} ⊆
{(i, a), (i, b), (i, c)}, the Type 1 triple.

Now suppose p = q. Then {(i, p), (j, q)} ⊆ {(i, p), (j, p), (i ◦ j, p+ 1)}, the Type 2 triple.
Finally, suppose i ̸= j and p ̸= q. Then either p = q + 1 or q = p + 1. First suppose

q = p+1. Then we want to show there is a k ∈ Q such that {(i, p), (k, p), (j, q = p+1)} ∈ T .
The element k must satisfy i ◦ k = j. Because Q is a quasigroup, this equation has a unique
solution k, so we are done. NOTE: it is impossible that k = i because Q is idempotent.

The same thing goes for the case p = q + 1. Therefore every pair is in at least one triple
in T . By Exercise 1.1.4, (S, T ) is thus a Steiner triple system.

Example JK1. Let us construct a Steiner triple system of nine elements. First let us take
the quasigroup

Q =

◦ 1 2 3
1 1 3 2
2 3 2 1
3 2 1 3
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Then the Bose Steiner triple system (Q× {a, b, c}, T ) contains |T | = 12 triples.

{(1, a), (1, b), (1, c)}, {(2, a), (2, b), (2, c)}, {(3, a), (3, b), (3, c)},
{(1, a), (2, a), (3, b)}, {(1, b), (2, b), (3, c)}, {(1, c), (2, c), (3, a)},
{(1, a), (3, a), (2, b)}, {(1, b), (3, b), (2, c)}, {(1, c), (3, c), (2, a)},
{(2, a), (3, a), (1, b)}, {(2, b), (3, b), (1, c)}, {(2, c), (3, c), (1, a)}.

This can be expressed in Grünbaum’s configuration notation as a (94, 123), because there
are 9 points, 4 “lines” per point, 12 “lines” and 3 points per “line.” This is the same kind of
configuration as that formed by the nine flex points of an elliptic curve.

So the Bose method can form a ([6n + 3][3n+1], [6n
2 + 5n + 1]3)-configuration. So we can

make a (157, 353)-configuration, a (2110, 703)-configuration, a (2713, 1173)-configuration, and
a (3316, 1763)-configuration etc. An (8140, 10803)-configuration etc.

Example JK2. Let us construct a Steiner triple system of fifteen elements. First let us
take the quasigroup

Q =

◦ 1 2 3 4 5
1 1 5 4 3 2
2 5 4 3 2 1
3 4 3 2 1 5
4 3 2 1 5 4
5 2 1 5 4 3

Note that this quasigroup is commutative but not idempotent! Does it fail to produce a
Steiner triple system? Then the Bose construction yields (Q×{a, b, c}, T ) contains |T | = 35
triples. The five Type 1 triples:

{(1, a), (1, b), (1, c)},
{(2, a), (2, b), (2, c)},
{(3, a), (3, b), (3, c)},
{(4, a), (4, b), (4, c)},
{(5, a), (5, b), (5, c)},
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and the thirty Type 2 triples:

{(1, a), (2, a), (5, b)}, {(1, b), (2, b), (5, c)}, {(1, c), (2, c), (5, a)},
{(1, a), (3, a), (4, b)}, {(1, b), (3, b), (4, c)}, {(1, c), (3, c), (4, a)},
{(1, a), (4, a), (3, b)}, {(1, b), (4, b), (3, c)}, {(1, c), (4, c), (3, a)},
{(1, a), (5, a), (2, b)}, {(1, b), (5, b), (2, c)}, {(1, c), (5, c), (2, a)},
{(2, a), (3, a), (3, b)}, {(2, b), (3, b), (3, c)}, {(2, c), (3, c), (3, a)},
{(2, a), (4, a), (2, b)}, {(2, b), (4, b), (2, c)}, {(2, c), (4, c), (2, a)},
{(2, a), (5, a), (1, b)}, {(2, b), (5, b), (1, c)}, {(2, c), (5, c), (1, a)},
{(3, a), (4, a), (1, b)}, {(3, b), (4, b), (1, c)}, {(3, c), (4, c), (1, a)},
{(3, a), (5, a), (5, b)}, {(3, b), (5, b), (5, c)}, {(3, c), (5, c), (5, a)},
{(4, a), (5, a), (4, b)}, {(4, b), (5, b), (4, c)}, {(4, c), (5, c), (4, a)}.

This fails to be a Steiner triple system because for example the pair {(5, a), (5, b)} appears in
the triple {(5, a), (5, b), (5, c)} of Type 1 and the triple {(3, a), (5, a), (5, b)} of Type 2. This
ultimately results from the non-idempotent nature of 3 ◦ 5 = 5.

Definition 1.3.1. A quasigroup of even order 2n is half-idempotent if i ◦ i = i for all
i ≤ n/2 and i ◦ i = i− n/2 for all i > n/2.

Note that for every odd n, you can make a commutative idempotent quasigroup out
of Z/nZ by i ◦ j = i+j

2
, since 2 ∈ (Z/nZ)×. For even 2n, you can partition Z/2nZ into

A = {0, . . . , n − 1} and B = {n, . . . , 2n − 1 = −1}. Then for the equation y = 2x, denote
by Ay the solution x in the set A, and denote by By the solution x in the set B. Then

i ◦ j =

{
Ai+j i+ j is even

Bi+j−1 i+ j is odd

is a half-idempotent commutative quasigroup.
The Skolem Construction (v ≡ 1 mod 6): Let Q be a half-idempotent commutative

quasigroup of order 2n, where Q = {1, . . . , 2n}. Define S = {∞} ∪ (Q× {a, b, c}). Define T
as following three types:

1. For 1 ≤ i ≤ n, {(i, a), (i, b), (i, c)} ∈ T .

2. For 1 ≤ i ≤ n, {∞, (n+ i, a), (i, b)}, {∞, (n+ i, b), (i, c)}, {∞, (n+ i, c), (i, a)} ∈ T .

3. For 1 ≤ i < j ≤ 2n, {(i, a), (j, a), (i ◦ j, b)}, {(i, b), (j, b), (i ◦ j, c)}, {(i, c), (j, c), (i ◦
j, a)} ∈ T .

Then (S, T ) is a Steiner triple system.

Proof. Let us again turn to Exercise 1.1.4. Counting up the triples of T , we get n triples of
Type 1, 3n triples of Type 2, and 3∗2n(2n−1)/2 = 6n2−3n triples of Type 3. Adding these
up, we get |T | = 6n2+n. Note that with v = 6n+1, we have v(v−1)/6 = (6n+1)(6n)/6 =
6n2 + n. And so |T | = v(v − 1)/6.

Next, we must show that every pair is present in at least one triple of T .
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• First let us consider pairs of the form {(i, p), (j, q)} where i, j ∈ Q and p, q ∈ {a, b, c}.
If i = j ≤ n, then {(i, p), (j, q)} is in a triple of Type 1.

• If i = j > n, then write i = j = k + n for some k ∈ Q. So we wish to find a triple
of T containing {(k + n, p), (k + n, q)}. Suppose that q = p + 1. Then we wish to
find an ℓ ∈ Q such that {(ℓ, p), (k + n, p), (k + n, q = p + 1)} ∈ T . This is a Type 3
triple. This is true if ℓ ◦ (k + n) = k + n. Because Q is a quasigroup, ℓ exists and
is unique. So the pair {(i, p), (j, q)} is in at least one triple. The same goes for if
p = q + 1. (NOTE: importantly, ℓ ̸= k + n because in a half-idempotent quasigroup
(k + n) ◦ (k + n) = k ̸= k + n.)

• Now suppose p = q. Then {(i, p), (j, p)} is in the Type 3 triple {(i, p), (j, p), (i◦j, p+1)}.

• Now suppose i ̸= j and p ̸= q. Suppose j = n+ i and p = q + 1. then {(i, p), (j, q)} is
in the Type 2 triple {∞, (j, q), (i, p)}.

• Now suppose j = n + i and q = p + 1. Then {(i, p), (j, q)} is in the Type 3 triple
{(i, p), (x, p), (j, q)} where x solves i ◦ x = j. Note it is impossible that x = i because
i ◦ i = i since i ≤ n and Q is half-idempotent.

• Now suppose i ̸= j do not satisfy |i− j| = n and p ̸= q. Suppose q = p + 1. Then we
want to find an x ∈ Q such that {(i, p), (x, p), (j, q)} is a Type 3 triple. Then i ◦x = j.

It is impossible that x = i, because i−(i◦i) =

{
0 i ≤ n

n i > n
. The former case contradicts

i ̸= j and the latter case contradicts |i− j| ≠ n. Thus x truly provides us with a Type
3 triple.

• Finally, consider the pair {∞, (i, p)}. If i ≤ n, then {∞, (i, p), (n+ i, p− 1)} is a Type
2 triple and if i > n then {∞, (i, p), (i− n, p+ 1)} is a Type 2 triple.

Those are all the possible pairs!!! They are all in some kind of triple in T , so by Exercise
1.1.4, we are done!!!

So this is a method of constructing a ([6n + 1][3n], [6n
2 + n]3)-configuration, I suppose.

We can make a (73, 73), a (136, 263), (199, 573), a (2512, 1003) etc.

Example JK3. Consider the half-idempotent commutative quasigroup Q represented by

the matrix


1 4 2 3
4 2 3 1
2 3 1 4
3 1 4 2

. Then we can construct the (136, 263) Steiner triple system on

S = {∞} ∪ (Q× {a, b, c}) has two triples of Type 1:

{(1, a), (1, b), (1, c)}, {(2, a), (2, b), (2, c)},

six triples of Type 2:

{∞, (3, a), (1, b)}, {∞, (3, b), (1, c)}, {∞, (3, c), (1, a)},
{∞, (4, a), (2, b)}, {∞, (4, b), (2, c)}, {∞, (4, c), (2, a)},

5



Jake Kettinger Design Theory Notes 8 September 2024

and eighteen triples of Type 3:

{(1, a), (2, a), (4, b)}, {(1, b), (2, b), (4, c)}, {(1, c), (2, c), (4, a)},
{(1, a), (3, a), (2, b)}, {(1, b), (3, b), (2, c)}, {(1, c), (3, c), (2, a)},
{(1, a), (4, a), (3, b)}, {(1, b), (4, b), (3, c)}, {(1, c), (4, c), (3, a)},
{(2, a), (3, a), (3, b)}, {(2, b), (3, b), (3, c)}, {(2, c), (3, c), (3, a)},
{(2, a), (4, a), (1, b)}, {(2, b), (4, b), (1, c)}, {(2, c), (4, c), (1, a)},
{(3, a), (4, a), (4, b)}, {(3, b), (4, b), (4, c)}, {(3, c), (4, c), (4, a)},

Pairwise Balanced Designs There is no Steiner triple system of order 6n+5, but we can
generalize the concept as a pairwise balanced design to approximate.

Definition 1.4.1. A pairwise balanced design is a set of elements S together with set
of blocks B ⊆ 2S such that every pair of elements of S is in exactly one block in B. (That
is, it is like a Steiner triple system without the requirement that all the blocks are size 3, or
indeed all the same size at all!)

Example 1.4.1. S = {1, 2, . . . , 11} and B contains the following 16 blocks:

{1, 2, 3, 4, 5}
{1, 6, 7}
{1, 8, 9}

{1, 10, 11}
{2, 6, 9}
{2, 7, 11}
{2, 8, 10}
{3, 6, 11}
{3, 7, 8}
{3, 9, 10}
{4, 6, 10}
{4, 7, 9}
{4, 8, 11}
{5, 6, 8}
{5, 7, 10}
{5, 9, 11}

Construction not recorded. Quasigroups with holes and Steiner triple systems:
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Let Q = {1, 2, . . . , 2n} and let H = {{1, 2}, {3, 4}, . . . , {2n − 1, 2n}}. In what follows,
the two-element subsets {2i − 1, 2i} are called holes. A quasigroup Q with holes H is a
quasigroup (Q, ◦) of order 2n in which for each h ∈ H, (h, ◦) is a subquasigroup of (Q, ◦).

1 2 5 6 7 8 3 4
2 1 8 7 3 4 6 5
5 8 3 4 2 7 1 6
6 7 4 3 8 1 5 2
7 3 2 8 5 6 4 1
8 4 7 1 6 5 2 3
3 6 1 5 4 2 7 8
4 5 6 2 1 3 8 7


Exercise 1.5.10. Let ({1, 2}, ◦1) be any quasigroup of order 2 (there are two of them), and
let (Q, ◦2) be an idempotent quasigroup of order 2n+1 (for example, a◦b = a+b

2
mod 2n+1,

which always exists since 2 is a unit mod 2n+ 1).
Let S = {1, 2}×Q. Define a binary operation on S by (a, b)⊗(c, d) = (a◦1 c, b◦2d). Then

(S,⊗) is a commutative quasigroup of order 4n+ 2 with holes H = {{(1, i), (2, i)} : i ∈ Q}.

Proof. The fact that S is a commutative quasigroup is immediate as both {1, 2} and Q are
commutative quasigroups. Then note that (1, i)⊗ (1, i) = (1◦1 1, i), (1, i)⊗ (2, i) = (1◦1 2, i),
(2, i)⊗(1, i) = (2◦1, i) = (1◦12, i), and (2, i)⊗(2, i) = (2◦12, i), which forms a subquasigroup
since ({1, 2}, ◦1) is a quasigroup.

Maybe I want to show that if Q is a quasigroup and with holes H of size 2 and h, h′ ∈ H
with h∩h′ ̸= ∅, then h = h′. Then (h, ◦) is a quasigroup and (h′, ◦) is a quasigroup. Then is
(h∩ h′, ◦) a quasigroup? Not necessarily. Well, let a ∈ h∩ h′, so h = {a, b} and h′ = {a, b′}.
Then ◦ a b

a a ◦ a a ◦ b
b b ◦ a b ◦ b


is a quasigroup and ◦ a b′

a a ◦ a a ◦ b′
b′ b′ ◦ a b′ ◦ b′


is a quasigroup. In order for both of these to be true, a ◦ a = a. Thus a ◦ b = b ◦ a = b and
a ◦ b′ = b′ ◦ a = b′ and b ◦ b = b′ ◦ b′ = a. So we have◦ a b

a a b
b b a


and ◦ a b′

a a b′

b′ b′ a

 .
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Then 
◦ a b b′

a a b b′

b b a ∗
b′ b′ ∗ a


Actually my claim is not true! For example, in

◦ 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

 ,

the number 1 forms a subquasigroup with 2, 3, and 4, so the holes are {1, 2}, {1, 3}, and
{1, 4}.

It could be the definition of holes requires a pairwise partition of the quasigroup.
Whatever... QED or something.

BASICALLY BASICALLY BASICALLY Exercise 1.5.10 is all about taking an idempotent
commutative 2n + 1 quasigroup and basically duplicating every entry as its own fucking
individual 2× 2 quasigroup, like so

Q =


◦ A B C
A A C B
B C B A
C B A C

 , A =

◦ 1 2
1 1 2
2 2 1

 , B =

◦ 3 4
3 3 4
4 4 3

 , C =

◦ 5 6
5 5 6
6 6 5


and so

Q =



◦ 1 2 3 4 5 6
1 1 2 5 6 3 4
2 2 1 6 5 4 3
3 5 6 3 4 1 2
4 6 5 4 3 2 1
5 3 4 1 2 5 6
6 4 3 2 1 6 5


.

That’s why it only works if #Q = 2 mod 4. If #Q = 0 mod 4 I suppose we can start with
a half-idempotent commutative quasigroup and doing the same sorta thing?

Let’s try it:

Q =


A D B C
D B C A
B C A D
C A D B


is a half-idempotent commutative quasigroup. Then let A =

(
1 2
2 1

)
and I can already tell

this isn’t going to work...
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Let ({1, . . . , 2n}, ◦) be a commutative quasigroup with holes H. Then

1. ({∞} ∪ ({1, 2, . . . , 2n} × {a, b, c}), B) is an STS(6n+ 1) where B is:

(a) for 1 ≤ i ≤ n, let Bi contain the triples in an STS(7) on the symbols {∞}∪({2i−
1, 2i} × {a, b, c}) and Bi ⊆ B, and

(b) for 1 ≤ i ̸= j ≤ 2n, {i, j} /∈ H place the triples {(i, a), (j, a), (i◦j, b)}, {(i, b), (j, b), (i◦
j, c)}, and {(i, c), (j, c), (i ◦ j, a)} in B.

2. ({∞1,∞2,∞3} ∪ ({1, 2, . . . , 2n} × {a, b, c}), B′) is an STS(6n + 3) where B′ replaces
(a) in 1. with:

(a) for 1 ≤ i ≤ n letB′ contain the triples in an STS(9) on the symbols {∞1,∞2,∞3}∪
({2i− 1, 2i} × {a, b, c}) in which {∞1,∞2,∞3} is a triple.

3. ({∞1,∞2,∞3,∞4,∞5} ∪ ({1, 2, . . . , 2n} × {a, b, c}), B′′) is a PBD(6n + 5) with one
block of size 5 and the rest of size 3 where B′′ replaces (a) of 1. with

(a) for 1 ≤ i ≤ n B′′
i contains the blocks in a PBD(11) on the symbols {∞1, . . . ,∞5}∪

({2i− 1, 2i} × {a, b, c}) in which {∞1, . . . ,∞5} is a block.

Let’s use Exercise 1.1.4 to prove that constructions 1 and 2 are indeed Steiner triple systems.

Proof. First let us start with construction 1. First we want to show that each pair is in at
least one triple. First take {∞, (2i, a)} as the pair. Then this pair is in the triple in the
Steiner triple system STS(7) on the symbols {∞}∪ ({2i− 1, 2i}×{a, b, c}). Same for 2i− 1
and b and c.

Now let us consider the pair {(i, a), (j, a)}. First, if {i, j} ∈ H then ∞∪({i, j}×{a, b, c})
forms an STS(7) and so {(i, a), (j, a)} is in one of those triples. Now if {i, j} is not a hole,
then this pair is in the triple {(i, a), (j, a), (i ◦ j, b)}. (Same for b and c.) Now let us consider
the pair {(i, a), (j, b)} where {i, j} is not a hole. Then there is a k ∈ Q such that i ◦ k = j
and so {(i, a), (k, a), (j, b)} is a triple containing the pair. (Same for a, b, c whatever.) Thus
every pair is in at least one triple presto!

Now we must show that the number of triples is at most (6n+1)(6n)/6 = 6n2+n. There

are 7n triples of type (a) and 3(2n(2n−2)
2

) = 3(n)(2n − 2) = 6n2 − 6n triples of type (b).

NOTE: it is not 3
(
2n
2

)
because the type (b) triples preclude {i, j} ∈ H, so it is 3(2n(2n−2)

2
)

instead of 3(2n(2n−1)
2

).
Adding these together, we have 7n+ 6n2 − 6n = 6n2 + n as desired. Thus Exercise 1.1.4

works to form a Steiner triple system here.

Now consider the type 2. system. First, every pair is in at least one triple. Let us
start with the pair {∞, (i, a)}. Then {∞} ∪ ({i, j} × {a, b, c}) with {i, j} ∈ H is an STS(9)
and so the pair {∞, (i, a)} is in one of the triples there. Same for b and c. Then consider
{(i, a), (j, a)}. If {i, j} ∈ H, then we have the same STS(9) as before. If {i, j} /∈ H, then
the pair {(i, a), (j, a)} is in a triple {(i, a), (j, a), (i ◦ j, b)} of type (b) like in construction 1.
Same for {(i, a), (j, b)}.
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Now the fun part. We want to show there are at most (6n + 3)(6n + 2)/6 = (36n2 +
30n + 6)/6 = 6n2 + 5n + 1 triples. There are 12 triples in each STS(9), giving ostensibly
12n triples of type (a’). But {∞1,∞2,∞3} is a triple shared by each STS(9). So there are

really 11n + 1 triples of type (a’). There are also 3 (2n)(2n−2)
2

= 6n2 − 6n triples of type (b).
So adding these together, we have 11n + 1 + 6n2 − 6n = 6n2 + 5n + 1 triples. So Exercise
1.1.4 works.
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