Definition 1.1. A **Steiner triple system** is an ordered pair (S, T) where S is a finite set of points or symbols, and T is a set of 3-element subsets of S called triples, such that each pair of distinct elements of S occurs together in exactly one triple of T.

One example is the Fano plane. An equivalent way of thinking of a Steiner triple system is as a partitioning of the edges of the complete graph $K_{|S|}$ into triangles.

Theorem 1.1.3. A Steiner triple system of order v exists if and only if $v \equiv 1$ or $3 \mod 6$.

Proof. If (S, T) is a Steiner triple system of order v, the triple $\{a, b, c\}$ contains exactly three two-element subsets: $\{a, b\}$, $\{a, c\}$, and $\{b, c\}$. Note that S itself contains $\binom{v}{2}$ -two element subsets. Since every pair much exist within one triple in T, we must have

$$3|T| = \binom{v}{2} = \frac{v(v-1)}{2}.$$

And so

$$|T| = \frac{v(v-1)}{6}.$$

For any $x \in S$, define the set $T(x) = \{t \setminus \{x\} : x \in t \in T\}$. Then T(x) partitions $S \setminus \{x\}$ into two-element subsets. This is because every $s \in S \setminus \{x\}$ is in exactly one triple alongside x, so if $y \in S$ is such that $\{x, y, s\} \in T$, then $\{y, s\}$ is the only pair in T(x) containing s.

Thus v - 1 is even, so v must be odd. Therefore $v \equiv 1$ or 3 or 5 mod 6. However, $\frac{v(v-1)}{6}$ is never an integer for $v \equiv 5 \mod 6$. This is because $5(5-1) = 20 \equiv 2 \mod 6 \not\equiv 0 \mod 6$. So we are left with $v \equiv 1$ or 3 mod 6.

It remains to show there exists a Steiner system for every such number. We will see this with various construction methods.

Exercise 1.1.4. Let S be a finite set of size v and let T be a set of triples of S satisfying

- 1. each pair of distinct elements of S belongs to at least one triple in T, and
- 2. $|T| \le v(v-1)/6$.

Show that (S, T) is a Steiner triple system.

Proof. Since $|T| \leq v(v-1)/6$, we know that $3|T| \leq {\binom{v}{2}}$. For each pair $\{x, y\} \in \mathcal{P}(S, 2)$, denote by $N_{\{x,y\}}$ the number of triples $t \in T$ that satisfy $\{x, y\} \subseteq t$. Let N be the sum total of the number of times each pair is present in a triple of T. Because of property (a), $N \geq {\binom{v}{2}}$. But because each triple always contains exactly three pairs, we have N = 3|T|. Therefore $N = 3|T| = {\binom{v}{2}}$.

Suppose there existed $z \neq w \in S$ such that $\{x, y, z\} = \{x, y, w\}$. Then $N_{\{x,y\}} > 1$. But then $N > {v \choose 2}$, which contradicts our earlier result. So we must have $N_{\{x,y\}} = 1$, and so we have a Steiner triple system.

Definition 1.2. A **latin square** of order n is an $n \times n$ array, each cell of which contains exactly one of the numbers $\{1, \ldots, n\}$ and each column and row of which contains exactly one of each of the numbers $\{1, \ldots, n\}$. A **quasigroup** of order n is a pair (Q, \circ) where Q is a set of n elements and $\cdot \circ \cdot : Q \times Q \to Q$ is a binary operation such that for every pair of elements $a, b \in Q$ the equations $a \circ x = b$ and $y \circ a = b$ have unique solutions.

A latin square and a quasigroup are essentially the same thing. The former is merely the multiplication table of the latter.

The Bose Construction ($v \equiv 3 \mod 6$): Let v = 6n + 3 and let Q be an idempotent quasigroup of order 2n + 1. Let $S = Q \times \{a, b, c\}$ and define T to contain the following two types:

- 1. For $1 \le i \le 2n+1$, $\{(i,a), (i,b), (i,c)\} \in T$.
- 2. For $1 \le i < j \le 2n + 1$ $\{(i, a), (j, a), (i \circ j, b)\}, \{(i, b), (j, b), (i \circ j, c)\}, \{(i, c), (j, c), (i \circ j, a)\} \in T.$

Then (S,T) is a Steiner triple system. This can be proven by applying Exercise 1.1.4.

Proof. First we will show that $|T| \le v(v-1)/6$. Recall now that v = 6n + 3. The triples of Type 1 can be counted as 2n+1. The triples of Type 2 can be counted as $3(2n+1)(2n)/2 = 3(2n^2+n) = 6n^2+3n$. Therefore $|T| = 6n^2+5n+1$. Note here that $v(v-1)/6 = (6n+3)(6n+2)/6 = (36n^2+30n+6)/6 = 6n^2+5n+1$. So in fact |T| = v(v-1)/6.

Next we need to demonstrate that every pair is in at least one triple of T. Let $\{(i, p), (j, q)\}$ be a pair, where $i, j \in Q$ and $p, q \in \{a, b, c\}$. First suppose i = j. Then $\{(i, p), (j, q)\} \subseteq \{(i, a), (i, b), (i, c)\}$, the Type 1 triple.

Now suppose p = q. Then $\{(i, p), (j, q)\} \subseteq \{(i, p), (j, p), (i \circ j, p + 1)\}$, the Type 2 triple. Finally, suppose $i \neq j$ and $p \neq q$. Then either p = q + 1 or q = p + 1. First suppose q = p + 1. Then we want to show there is a $k \in Q$ such that $\{(i, p), (k, p), (j, q = p + 1)\} \in T$. The element k must satisfy $i \circ k = j$. Because Q is a quasigroup, this equation has a unique solution k, so we are done. NOTE: it is impossible that k = i because Q is idempotent.

The same thing goes for the case p = q + 1. Therefore every pair is in at least one triple in T. By Exercise 1.1.4, (S, T) is thus a Steiner triple system.

Example JK1. Let us construct a Steiner triple system of nine elements. First let us take the quasigroup

Q =	0	1	2	3
	1	1	3	2
	2	3	2	1
	3	2	1	3

Then the Bose Steiner triple system $(Q \times \{a, b, c\}, T)$ contains |T| = 12 triples.

 $\{(1, a), (1, b), (1, c)\}, \{(2, a), (2, b), (2, c)\}, \{(3, a), (3, b), (3, c)\}, \\ \{(1, a), (2, a), (3, b)\}, \{(1, b), (2, b), (3, c)\}, \{(1, c), (2, c), (3, a)\}, \\ \{(1, a), (3, a), (2, b)\}, \{(1, b), (3, b), (2, c)\}, \{(1, c), (3, c), (2, a)\}, \\ \{(2, a), (3, a), (1, b)\}, \{(2, b), (3, b), (1, c)\}, \{(2, c), (3, c), (1, a)\}.$

This can be expressed in Grünbaum's configuration notation as a $(9_4, 12_3)$, because there are 9 points, 4 "lines" per point, 12 "lines" and 3 points per "line." This is the same kind of configuration as that formed by the nine flex points of an elliptic curve.

So the Bose method can form a $([6n + 3]_{[3n+1]}, [6n^2 + 5n + 1]_3)$ -configuration. So we can make a $(15_7, 35_3)$ -configuration, a $(21_{10}, 70_3)$ -configuration, a $(27_{13}, 117_3)$ -configuration, and a $(33_{16}, 176_3)$ -configuration etc. An $(81_{40}, 1080_3)$ -configuration etc.

Example JK2. Let us construct a Steiner triple system of fifteen elements. First let us take the quasigroup

Q =	0	1	2	3	4	5
	1	1	5	4	3	2
	2	5	4	3	2	1
	3	4	3	2	1	5
	4	3	2	1	5	4
	5	2	1	5	4	3

Note that this quasigroup is commutative but not idempotent! Does it fail to produce a Steiner triple system? Then the Bose construction yields $(Q \times \{a, b, c\}, T)$ contains |T| = 35 triples. The five Type 1 triples:

```
\begin{split} &\{(1,a),(1,b),(1,c)\},\\ &\{(2,a),(2,b),(2,c)\},\\ &\{(3,a),(3,b),(3,c)\},\\ &\{(4,a),(4,b),(4,c)\},\\ &\{(5,a),(5,b),(5,c)\}, \end{split}
```

and the thirty Type 2 triples:

 $\{(1, a), (2, a), (5, b)\}, \{(1, b), (2, b), (5, c)\}, \{(1, c), (2, c), (5, a)\}, \\ \{(1, a), (3, a), (4, b)\}, \{(1, b), (3, b), (4, c)\}, \{(1, c), (3, c), (4, a)\}, \\ \{(1, a), (4, a), (3, b)\}, \{(1, b), (4, b), (3, c)\}, \{(1, c), (4, c), (3, a)\}, \\ \{(1, a), (5, a), (2, b)\}, \{(1, b), (5, b), (2, c)\}, \{(1, c), (5, c), (2, a)\}, \\ \{(2, a), (3, a), (3, b)\}, \{(2, b), (3, b), (3, c)\}, \{(2, c), (3, c), (3, a)\}, \\ \{(2, a), (4, a), (2, b)\}, \{(2, b), (4, b), (2, c)\}, \{(2, c), (4, c), (2, a)\}, \\ \{(2, a), (5, a), (1, b)\}, \{(2, b), (5, b), (1, c)\}, \{(2, c), (5, c), (1, a)\}, \\ \{(3, a), (4, a), (1, b)\}, \{(3, b), (4, b), (1, c)\}, \{(3, c), (4, c), (1, a)\}, \\ \{(4, a), (5, a), (4, b)\}, \{(4, b), (5, b), (4, c)\}, \{(4, c), (5, c), (4, a)\}.$

This fails to be a Steiner triple system because for example the pair $\{(5, a), (5, b)\}$ appears in the triple $\{(5, a), (5, b), (5, c)\}$ of Type 1 and the triple $\{(3, a), (5, a), (5, b)\}$ of Type 2. This ultimately results from the non-idempotent nature of $3 \circ 5 = 5$.

Definition 1.3.1. A quasigroup of even order 2n is half-idempotent if $i \circ i = i$ for all $i \leq n/2$ and $i \circ i = i - n/2$ for all i > n/2.

Note that for every odd n, you can make a commutative idempotent quasigroup out of $\mathbb{Z}/n\mathbb{Z}$ by $i \circ j = \frac{i+j}{2}$, since $2 \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. For even 2n, you can partition $\mathbb{Z}/2n\mathbb{Z}$ into $A = \{0, \ldots, n-1\}$ and $B = \{n, \ldots, 2n-1 = -1\}$. Then for the equation y = 2x, denote by A_y the solution x in the set A, and denote by B_y the solution x in the set B. Then

$$i \circ j = \begin{cases} A_{i+j} & i+j \text{ is even} \\ B_{i+j-1} & i+j \text{ is odd} \end{cases}$$

is a half-idempotent commutative quasigroup.

The Skolem Construction ($v \equiv 1 \mod 6$): Let Q be a half-idempotent commutative quasigroup of order 2n, where $Q = \{1, \ldots, 2n\}$. Define $S = \{\infty\} \cup (Q \times \{a, b, c\})$. Define T as following three types:

1. For $1 \le i \le n$, $\{(i, a), (i, b), (i, c)\} \in T$.

2. For
$$1 \le i \le n$$
, $\{\infty, (n+i, a), (i, b)\}, \{\infty, (n+i, b), (i, c)\}, \{\infty, (n+i, c), (i, a)\} \in T$.

3. For $1 \le i < j \le 2n$, $\{(i,a), (j,a), (i \circ j, b)\}, \{(i,b), (j,b), (i \circ j, c)\}, \{(i,c), (j,c), (i \circ j, a)\} \in T$.

Then (S, T) is a Steiner triple system.

Proof. Let us again turn to Exercise 1.1.4. Counting up the triples of T, we get n triples of Type 1, 3n triples of Type 2, and $3 * 2n(2n-1)/2 = 6n^2 - 3n$ triples of Type 3. Adding these up, we get $|T| = 6n^2 + n$. Note that with v = 6n + 1, we have $v(v-1)/6 = (6n+1)(6n)/6 = 6n^2 + n$. And so |T| = v(v-1)/6.

Next, we must show that every pair is present in at least one triple of T.

- First let us consider pairs of the form $\{(i, p), (j, q)\}$ where $i, j \in Q$ and $p, q \in \{a, b, c\}$. If $i = j \le n$, then $\{(i, p), (j, q)\}$ is in a triple of Type 1.
- If i = j > n, then write i = j = k + n for some $k \in Q$. So we wish to find a triple of T containing $\{(k+n, p), (k+n, q)\}$. Suppose that q = p + 1. Then we wish to find an $\ell \in Q$ such that $\{(\ell, p), (k+n, p), (k+n, q=p+1)\} \in T$. This is a Type 3 triple. This is true if $\ell \circ (k+n) = k+n$. Because Q is a quasigroup, ℓ exists and is unique. So the pair $\{(i, p), (j, q)\}$ is in at least one triple. The same goes for if p = q + 1. (NOTE: importantly, $\ell \neq k + n$ because in a half-idempotent quasigroup $(k+n) \circ (k+n) = k \neq k+n.$
- Now suppose p = q. Then $\{(i, p), (j, p)\}$ is in the Type 3 triple $\{(i, p), (j, p), (i \circ j, p+1)\}$.
- Now suppose $i \neq j$ and $p \neq q$. Suppose j = n + i and p = q + 1. then $\{(i, p), (j, q)\}$ is in the Type 2 triple $\{\infty, (j, q), (i, p)\}$.
- Now suppose j = n + i and q = p + 1. Then $\{(i, p), (j, q)\}$ is in the Type 3 triple $\{(i, p), (x, p), (j, q)\}$ where x solves $i \circ x = j$. Note it is impossible that x = i because $i \circ i = i$ since $i \leq n$ and Q is half-idempotent.
- Now suppose $i \neq j$ do not satisfy |i-j| = n and $p \neq q$. Suppose q = p+1. Then we want to find an $x \in Q$ such that $\{(i, p), (x, p), (j, q)\}$ is a Type 3 triple. Then $i \circ x = j$. It is impossible that x = i, because $i - (i \circ i) = \begin{cases} 0 & i \le n \\ n & i > n \end{cases}$. The former case contradicts $i \neq j$ and the latter case contradicts $|i-j| \neq n$. Thus x truly provides us with a Type 3 triple.
- Finally, consider the pair $\{\infty, (i, p)\}$. If $i \leq n$, then $\{\infty, (i, p), (n+i, p-1)\}$ is a Type 2 triple and if i > n then $\{\infty, (i, p), (i - n, p + 1)\}$ is a Type 2 triple.

Those are all the possible pairs!!! They are all in some kind of triple in T, so by Exercise 1.1.4, we are done!!!

So this is a method of constructing a $([6n + 1]_{[3n]}, [6n^2 + n]_3)$ -configuration, I suppose. We can make a $(7_3, 7_3)$, a $(13_6, 26_3)$, $(19_9, 57_3)$, a $(25_{12}, 100_3)$ etc.

Example JK3. Consider the half-idempotent commutative quasigroup Q represented by

the matrix $\begin{pmatrix} 1 & 4 & 2 & 3 \\ 4 & 2 & 3 & 1 \\ 2 & 3 & 1 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$. Then we can construct the $(13_6, 26_3)$ Steiner triple system on $S = \{\infty\} \cup (Q \times \{a, b, c\})$ has two triples of Type 1:

$$\{(1, a), (1, b), (1, c)\}, \{(2, a), (2, b), (2, c)\},\$$

six triples of Type 2:

$$\{\infty, (3, a), (1, b)\}, \{\infty, (3, b), (1, c)\}, \{\infty, (3, c), (1, a)\}, \\ \{\infty, (4, a), (2, b)\}, \{\infty, (4, b), (2, c)\}, \{\infty, (4, c), (2, a)\},$$

and eighteen triples of Type 3:

$$\begin{split} &\{(1,a),(2,a),(4,b)\},\{(1,b),(2,b),(4,c)\},\{(1,c),(2,c),(4,a)\},\\ &\{(1,a),(3,a),(2,b)\},\{(1,b),(3,b),(2,c)\},\{(1,c),(3,c),(2,a)\},\\ &\{(1,a),(4,a),(3,b)\},\{(1,b),(4,b),(3,c)\},\{(1,c),(4,c),(3,a)\},\\ &\{(2,a),(3,a),(3,b)\},\{(2,b),(3,b),(3,c)\},\{(2,c),(3,c),(3,a)\},\\ &\{(2,a),(4,a),(1,b)\},\{(2,b),(4,b),(1,c)\},\{(2,c),(4,c),(1,a)\},\\ &\{(3,a),(4,a),(4,b)\},\{(3,b),(4,b),(4,c)\},\{(3,c),(4,c),(4,a)\}, \end{split}$$

Pairwise Balanced Designs There is no Steiner triple system of order 6n + 5, but we can generalize the concept as a **pairwise balanced design** to approximate.

Definition 1.4.1. A **pairwise balanced design** is a set of elements S together with set of blocks $B \subseteq 2^S$ such that every pair of elements of S is in exactly one block in B. (That is, it is like a Steiner triple system without the requirement that all the blocks are size 3, or indeed all the same size at all!)

Example 1.4.1. $S = \{1, 2, \dots, 11\}$ and B contains the following 16 blocks:

$$\{1, 2, 3, 4, 5\} \\ \{1, 6, 7\} \\ \{1, 8, 9\} \\ \{1, 10, 11\} \\ \{2, 6, 9\} \\ \{2, 7, 11\} \\ \{2, 8, 10\} \\ \{3, 6, 11\} \\ \{3, 7, 8\} \\ \{3, 9, 10\} \\ \{4, 6, 10\} \\ \{4, 7, 9\} \\ \{4, 8, 11\} \\ \{5, 6, 8\} \\ \{5, 7, 10\} \\ \{5, 9, 11\} \end{cases}$$

Construction not recorded. Quasigroups with holes and Steiner triple systems:

Let $Q = \{1, 2, ..., 2n\}$ and let $H = \{\{1, 2\}, \{3, 4\}, ..., \{2n - 1, 2n\}\}$. In what follows, the two-element subsets $\{2i - 1, 2i\}$ are called **holes**. A quasigroup Q with holes H is a quasigroup (Q, \circ) of order 2n in which for each $h \in H$, (h, \circ) is a subquasigroup of (Q, \circ) .

/1	2	5	6	7	8	3	4
2	1	8	7	3	4	6	5
5	8	3	4	2	7	1	6
6	7	4	3	8	1	5	2
I -							
7	3	2	8	5	6	4	1
$\begin{vmatrix} 7\\ 8 \end{vmatrix}$	$\frac{3}{4}$	$\frac{2}{7}$	8 1	5 6	6 5	$\frac{4}{2}$	$\frac{1}{3}$
$\begin{bmatrix} 7\\ 8\\ 3 \end{bmatrix}$	3 4 6	2 7 1	8 1 5	5 6 4	6 5 2	4 2 7	1 3 8

Exercise 1.5.10. Let $(\{1,2\}, \circ_1)$ be any quasigroup of order 2 (there are two of them), and let (Q, \circ_2) be an idempotent quasigroup of order 2n+1 (for example, $a \circ b = \frac{a+b}{2} \mod 2n+1$, which always exists since 2 is a unit mod 2n+1).

Let $S = \{1, 2\} \times Q$. Define a binary operation on S by $(a, b) \otimes (c, d) = (a \circ_1 c, b \circ_2 d)$. Then (S, \otimes) is a commutative quasigroup of order 4n + 2 with holes $H = \{\{(1, i), (2, i)\} : i \in \mathbb{Q}\}$.

Proof. The fact that S is a commutative quasigroup is immediate as both $\{1, 2\}$ and Q are commutative quasigroups. Then note that $(1, i) \otimes (1, i) = (1 \circ_1 1, i), (1, i) \otimes (2, i) = (1 \circ_1 2, i), (2, i) \otimes (1, i) = (2 \circ_1, i) = (1 \circ_1 2, i), and (2, i) \otimes (2, i) = (2 \circ_1 2, i), which forms a subquasigroup since <math>(\{1, 2\}, \circ_1)$ is a quasigroup.

Maybe I want to show that if Q is a quasigroup and with holes H of size 2 and $h, h' \in H$ with $h \cap h' \neq \emptyset$, then h = h'. Then (h, \circ) is a quasigroup and (h', \circ) is a quasigroup. Then is $(h \cap h', \circ)$ a quasigroup? Not necessarily. Well, let $a \in h \cap h'$, so $h = \{a, b\}$ and $h' = \{a, b'\}$. Then

$$\begin{pmatrix} \circ & a & b \\ a & a \circ a & a \circ b \\ b & b \circ a & b \circ b \end{pmatrix}$$

is a quasigroup and

(°	a	b'
a	$a \circ a$	$a \circ b'$
b'	$b' \circ a$	$b' \circ b' $

is a quasigroup. In order for both of these to be true, $a \circ a = a$. Thus $a \circ b = b \circ a = b$ and $a \circ b' = b' \circ a = b'$ and $b \circ b = b' \circ b' = a$. So we have

$$\begin{pmatrix} \circ & a & b \\ a & a & b \\ b & b & a \end{pmatrix}$$
$$\begin{pmatrix} \circ & a & b' \\ a & a & b' \\ b' & b' & a \end{pmatrix}$$

and

Then

$$\begin{pmatrix} \circ & a & b & b' \\ a & a & b & b' \\ b & b & a & * \\ b' & b' & * & a \end{pmatrix}$$

Actually my claim is not true! For example, in

<i>(</i> °	1	2	3	4	
1	1	2	3	4	
2	2	1	4	3	,
3	3	4	1	2	
$\setminus 4$	4	3	2	1/	

the number 1 forms a subquasigroup with 2, 3, and 4, so the holes are $\{1, 2\}$, $\{1, 3\}$, and $\{1, 4\}$.

It could be the definition of holes requires a pairwise partition of the quasigroup. Whatever... QED or something.

BASICALLY BASICALLY BASICALLY Exercise 1.5.10 is all about taking an idempotent commutative 2n + 1 quasigroup and basically duplicating every entry as its own fucking individual 2×2 quasigroup, like so

$$Q = \begin{pmatrix} \circ & A & B & C \\ A & A & C & B \\ B & C & B & A \\ C & B & A & C \end{pmatrix}, A = \begin{pmatrix} \circ & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} \circ & 3 & 4 \\ 3 & 3 & 4 \\ 4 & 4 & 3 \end{pmatrix}, C = \begin{pmatrix} \circ & 5 & 6 \\ 5 & 5 & 6 \\ 6 & 6 & 5 \end{pmatrix}$$

and so

$$Q = \begin{pmatrix} \circ & 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & \mathbf{1} & \mathbf{2} & 5 & 6 & 3 & 4 \\ 2 & \mathbf{2} & \mathbf{1} & 6 & 5 & 4 & 3 \\ 3 & 5 & 6 & \mathbf{3} & \mathbf{4} & 1 & 2 \\ 4 & 6 & 5 & \mathbf{4} & \mathbf{3} & 2 & 1 \\ 5 & 3 & 4 & 1 & 2 & \mathbf{5} & \mathbf{6} \\ 6 & 4 & 3 & 2 & 1 & \mathbf{6} & \mathbf{5} \end{pmatrix}$$

That's why it only works if $\#Q = 2 \mod 4$. If $\#Q = 0 \mod 4$ I suppose we can start with a half-idempotent commutative quasigroup and doing the same sorta thing?

Let's try it:

$$Q = \begin{pmatrix} A & D & B & C \\ D & B & C & A \\ B & C & A & D \\ C & A & D & B \end{pmatrix}$$

is a half-idempotent commutative quasigroup. Then let $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ and I can already tell this isn't going to work...

Let $(\{1, \ldots, 2n\}, \circ)$ be a commutative quasigroup with holes H. Then

- 1. $(\{\infty\} \cup (\{1, 2, \dots, 2n\} \times \{a, b, c\}), B)$ is an STS(6n + 1) where B is:
 - (a) for $1 \le i \le n$, let B_i contain the triples in an STS(7) on the symbols $\{\infty\} \cup (\{2i 1, 2i\} \times \{a, b, c\})$ and $B_i \subseteq B$, and
 - (b) for $1 \le i \ne j \le 2n$, $\{i, j\} \notin H$ place the triples $\{(i, a), (j, a), (i \circ j, b)\}$, $\{(i, b), (j, b), (i \circ j, c)\}$, and $\{(i, c), (j, c), (i \circ j, a)\}$ in B.
- 2. $(\{\infty_1, \infty_2, \infty_3\} \cup (\{1, 2, \dots, 2n\} \times \{a, b, c\}), B')$ is an STS(6n + 3) where B' replaces (a) in 1. with:
 - (a) for $1 \le i \le n$ let B' contain the triples in an STS(9) on the symbols $\{\infty_1, \infty_2, \infty_3\} \cup (\{2i-1, 2i\} \times \{a, b, c\})$ in which $\{\infty_1, \infty_2, \infty_3\}$ is a triple.
- 3. $(\{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5\} \cup (\{1, 2, \dots, 2n\} \times \{a, b, c\}), B'')$ is a PBD(6n + 5) with one block of size 5 and the rest of size 3 where B'' replaces (a) of 1. with
 - (a) for $1 \le i \le n B_i''$ contains the blocks in a PBD(11) on the symbols $\{\infty_1, \ldots, \infty_5\} \cup (\{2i-1, 2i\} \times \{a, b, c\})$ in which $\{\infty_1, \ldots, \infty_5\}$ is a block.

Let's use Exercise 1.1.4 to prove that constructions 1 and 2 are indeed Steiner triple systems.

Proof. First let us start with construction 1. First we want to show that each pair is in at least one triple. First take $\{\infty, (2i, a)\}$ as the pair. Then this pair is in the triple in the Steiner triple system STS(7) on the symbols $\{\infty\} \cup (\{2i-1, 2i\} \times \{a, b, c\})$. Same for 2i - 1 and b and c.

Now let us consider the pair $\{(i, a), (j, a)\}$. First, if $\{i, j\} \in H$ then $\infty \cup (\{i, j\} \times \{a, b, c\})$ forms an STS(7) and so $\{(i, a), (j, a)\}$ is in one of those triples. Now if $\{i, j\}$ is not a hole, then this pair is in the triple $\{(i, a), (j, a), (i \circ j, b)\}$. (Same for b and c.) Now let us consider the pair $\{(i, a), (j, b)\}$ where $\{i, j\}$ is not a hole. Then there is a $k \in Q$ such that $i \circ k = j$ and so $\{(i, a), (k, a), (j, b)\}$ is a triple containing the pair. (Same for a, b, c whatever.) Thus every pair is in at least one triple presto!

Now we must show that the number of triples is at most $(6n+1)(6n)/6 = 6n^2 + n$. There are 7n triples of type (a) and $3(\frac{2n(2n-2)}{2}) = 3(n)(2n-2) = 6n^2 - 6n$ triples of type (b). NOTE: it is not $3\binom{2n}{2}$ because the type (b) triples preclude $\{i, j\} \in H$, so it is $3(\frac{2n(2n-2)}{2})$ instead of $3(\frac{2n(2n-1)}{2})$.

Adding these together, we have $7n + 6n^2 - 6n = 6n^2 + n$ as desired. Thus Exercise 1.1.4 works to form a Steiner triple system here.

Now consider the type 2. system. First, every pair is in at least one triple. Let us start with the pair $\{\infty, (i, a)\}$. Then $\{\infty\} \cup (\{i, j\} \times \{a, b, c\})$ with $\{i, j\} \in H$ is an STS(9) and so the pair $\{\infty, (i, a)\}$ is in one of the triples there. Same for b and c. Then consider $\{(i, a), (j, a)\}$. If $\{i, j\} \in H$, then we have the same STS(9) as before. If $\{i, j\} \notin H$, then the pair $\{(i, a), (j, a)\}$ is in a triple $\{(i, a), (j, a), (i \circ j, b)\}$ of type (b) like in construction 1. Same for $\{(i, a), (j, b)\}$.

Now the fun part. We want to show there are at most $(6n + 3)(6n + 2)/6 = (36n^2 + 30n + 6)/6 = 6n^2 + 5n + 1$ triples. There are 12 triples in each STS(9), giving ostensibly 12n triples of type (a'). But $\{\infty_1, \infty_2, \infty_3\}$ is a triple shared by each STS(9). So there are really 11n + 1 triples of type (a'). There are also $3\frac{(2n)(2n-2)}{2} = 6n^2 - 6n$ triples of type (b). So adding these together, we have $11n + 1 + 6n^2 - 6n = 6n^2 + 5n + 1$ triples. So Exercise 1.1.4 works.