Definition 1.1. A Steiner triple system is an ordered pair (S, T) where S is a finite set of points or symbols, and T is a set of 3-element subsets of S called triples, such that each pair of distinct elements of S occurs together in exactly one triple of T.

One example is the Fano plane. An equivalent way of thinking of a Steiner triple system is as a partitioning of the edges of the complete graph $K_{|S|}$ into triangles.

Theorem 1.1.3. A Steiner triple system of order v exists if and only if $v \equiv 1$ or 3 mod 6.

Proof. If (S, T) is a Steiner triple system of order v, the triple $\{a, b, c\}$ contains exactly three two-element subsets: $\{a, b\}$, $\{a, c\}$, and $\{b, c\}$. Note that S itself contains $\binom{v}{2}$ $_{2}^{v}$)-two element subsets. Since every pair much exist within one triple in T , we must have

$$
3|T| = \binom{v}{2} = \frac{v(v-1)}{2}.
$$

And so

$$
|T| = \frac{v(v-1)}{6}.
$$

For any $x \in S$, define the set $T(x) = \{t \setminus \{x\} : x \in t \in T\}$. Then $T(x)$ partitions $S \setminus \{x\}$ into two-element subsets. This is because every $s \in S \setminus \{x\}$ is in exactly one triple alongside x, so if $y \in S$ is such that $\{x, y, s\} \in T$, then $\{y, s\}$ is the only pair in $T(x)$ containing s.

Thus $v-1$ is even, so v must be odd. Therefore $v \equiv 1$ or 3 or 5 mod 6. However, $\frac{v(v-1)}{6}$ is never an integer for $v \equiv 5 \mod 6$. This is because $5(5-1) = 20 \equiv 2 \mod 6 \not\equiv 0 \mod 6$. So we are left with $v \equiv 1$ or 3 mod 6. \Box

It remains to show there exists a Steiner system for every such number. We will see this with various construction methods.

Exercise 1.1.4. Let S be a finite set of size v and let T be a set of triples of S satisfying

- 1. each pair of distinct elements of S belongs to at least one triple in T , and
- 2. $|T| \le v(v-1)/6$.

Show that (S, T) is a Steiner triple system.

Proof. Since $|T| \le v(v-1)/6$, we know that $3|T| \le \binom{v}{2}$ ^v₂). For each pair $\{x, y\} \in \mathcal{P}(S, 2)$, denote by $N_{\{x,y\}}$ the number of triples $t \in T$ that satisfy $\{x,y\} \subseteq t$. Let N be the sum total of the number of times each pair is present in a triple of T. Because of property (a), $N \geq \binom{v}{2}$ ^v₂). But because each triple always contains exactly three pairs, we have $N = 3|T|$. Therefore $N=3|T|=\binom{v}{2}$ $\binom{v}{2}$.

Suppose there existed $z \neq w \in S$ such that $\{x, y, z\} = \{x, y, w\}$. Then $N_{\{x, y\}} > 1$. But then $N > \binom{v}{2}$ $\binom{v}{2}$, which contradicts our earlier result. So we must have $N_{\{x,y\}}=1$, and so we have a Steiner triple system.

 \Box

Definition 1.2. A latin square of order n is an $n \times n$ array, each cell of which contains exactly one of the numbers $\{1, \ldots, n\}$ and each column and row of which contains exactly one of each of the numbers $\{1, \ldots, n\}$. A **quasigroup** of order *n* is a pair (Q, \circ) where Q is a set of n elements and $\cdot \circ \cdot : Q \times Q \to Q$ is a binary operation such that for every pair of elements $a, b \in Q$ the equations $a \circ x = b$ and $y \circ a = b$ have unique solutions.

A latin square and a quasigroup are essentially the same thing. The former is merely the multiplication table of the latter.

The Bose Construction ($v \equiv 3 \mod 6$): Let $v = 6n + 3$ and let Q be an idempotent quasigroup of order $2n + 1$. Let $S = Q \times \{a, b, c\}$ and define T to contain the following two types:

- 1. For $1 \leq i \leq 2n+1$, $\{(i, a), (i, b), (i, c)\}\in T$.
- 2. For $1 \leq i < j \leq 2n+1$ $\{(i, a), (j, a), (i \circ j, b)\}, \{(i, b), (j, b), (i \circ j, c)\}, \{(i, c), (j, c), (i \circ j, c)\}$ $j,a)\}\in T$.

Then (S, T) is a Steiner triple system. This can be proven by applying Exercise 1.1.4.

Proof. First we will show that $|T| \le v(v-1)/6$. Recall now that $v = 6n + 3$. The triples of Type 1 can be counted as $2n+1$. The triples of Type 2 can be counted as $3(2n+1)(2n)/2 =$ $3(2n^2 + n) = 6n^2 + 3n$. Therefore $|T| = 6n^2 + 5n + 1$. Note here that $v(v-1)/6$ $(6n+3)(6n+2)/6 = (36n^2+30n+6)/6 = 6n^2+5n+1$. So in fact $|T| = v(v-1)/6$.

Next we need to demonstrate that every pair is in at least one triple of T. Let $\{(i, p), (j, q)\}$ be a pair, where $i, j \in Q$ and $p, q \in \{a, b, c\}$. First suppose $i = j$. Then $\{(i, p), (j, q)\} \subseteq$ $\{(i, a), (i, b), (i, c)\}\$, the Type 1 triple.

Now suppose $p = q$. Then $\{(i, p), (j, q)\} \subseteq \{(i, p), (j, p), (i \circ j, p + 1)\}$, the Type 2 triple. Finally, suppose $i \neq j$ and $p \neq q$. Then either $p = q + 1$ or $q = p + 1$. First suppose $q = p+1$. Then we want to show there is a $k \in Q$ such that $\{(i, p), (k, p), (j, q = p+1)\} \in T$. The element k must satisfy $i \circ k = j$. Because Q is a quasigroup, this equation has a unique solution k, so we are done. NOTE: it is impossible that $k = i$ because Q is idempotent.

The same thing goes for the case $p = q + 1$. Therefore every pair is in at least one triple in T. By Exercise 1.1.4, (S, T) is thus a Steiner triple system. \Box

Example JK1. Let us construct a Steiner triple system of nine elements. First let us take the quasigroup

Then the Bose Steiner triple system $(Q \times \{a, b, c\}, T)$ contains $|T| = 12$ triples.

 $\{(1, a), (1, b), (1, c)\}, \{(2, a), (2, b), (2, c)\}, \{(3, a), (3, b), (3, c)\},\$ $\{(1, a), (2, a), (3, b)\}, \{(1, b), (2, b), (3, c)\}, \{(1, c), (2, c), (3, a)\},\$ $\{(1, a), (3, a), (2, b)\}, \{(1, b), (3, b), (2, c)\}, \{(1, c), (3, c), (2, a)\},\$ $\{(2, a), (3, a), (1, b)\}, \{(2, b), (3, b), (1, c)\}, \{(2, c), (3, c), (1, a)\}.$

This can be expressed in Grünbaum's configuration notation as a $(9₄, 12₃)$, because there are 9 points, 4 "lines" per point, 12 "lines" and 3 points per "line." This is the same kind of configuration as that formed by the nine flex points of an elliptic curve.

So the Bose method can form a $([6n+3]_{[3n+1]}, [6n^2+5n+1]_3)$ -configuration. So we can make a $(15₇, 35₃)$ -configuration, a $(21₁₀, 70₃)$ -configuration, a $(27₁₃, 117₃)$ -configuration, and a $(33_{16}, 176_3)$ -configuration etc. An $(81_{40}, 1080_3)$ -configuration etc.

Example JK2. Let us construct a Steiner triple system of fifteen elements. First let us take the quasigroup

Note that this quasigroup is commutative but not idempotent! Does it fail to produce a Steiner triple system? Then the Bose construction yields $(Q \times \{a, b, c\}, T)$ contains $|T| = 35$ triples. The five Type 1 triples:

```
\{(1, a), (1, b), (1, c)\},\\{(2, a), (2, b), (2, c)\},\\{(3, a), (3, b), (3, c)\},\\{(4, a), (4, b), (4, c)\},\\{(5, a), (5, b), (5, c)\},\
```
and the thirty Type 2 triples:

 $\{(1, a), (2, a), (5, b)\}, \{(1, b), (2, b), (5, c)\}, \{(1, c), (2, c), (5, a)\},\$ $\{(1, a), (3, a), (4, b)\}, \{(1, b), (3, b), (4, c)\}, \{(1, c), (3, c), (4, a)\},\$ $\{(1, a), (4, a), (3, b)\}, \{(1, b), (4, b), (3, c)\}, \{(1, c), (4, c), (3, a)\},\$ $\{(1, a), (5, a), (2, b)\}, \{(1, b), (5, b), (2, c)\}, \{(1, c), (5, c), (2, a)\},\$ $\{(2, a), (3, a), (3, b)\}, \{(2, b), (3, b), (3, c)\}, \{(2, c), (3, c), (3, a)\},\$ $\{(2, a), (4, a), (2, b)\}, \{(2, b), (4, b), (2, c)\}, \{(2, c), (4, c), (2, a)\},\$ $\{(2, a), (5, a), (1, b)\}, \{(2, b), (5, b), (1, c)\}, \{(2, c), (5, c), (1, a)\},\$ $\{(3, a), (4, a), (1, b)\}, \{(3, b), (4, b), (1, c)\}, \{(3, c), (4, c), (1, a)\},\$ $\{(3, a), (5, a), (5, b)\}, \{(3, b), (5, b), (5, c)\}, \{(3, c), (5, c), (5, a)\},\$ $\{(4, a), (5, a), (4, b)\}, \{(4, b), (5, b), (4, c)\}, \{(4, c), (5, c), (4, a)\}.$

This fails to be a Steiner triple system because for example the pair $\{(5, a), (5, b)\}\$ appears in the triple $\{(5, a), (5, b), (5, c)\}\$ of Type 1 and the triple $\{(3, a), (5, a), (5, b)\}\$ of Type 2. This ultimately results from the non-idempotent nature of $3 \circ 5 = 5$.

Definition 1.3.1. A quasigroup of even order 2n is **half-idempotent** if $i \circ i = i$ for all $i \leq n/2$ and $i \circ i = i - n/2$ for all $i > n/2$.

Note that for every odd n , you can make a commutative idempotent quasigroup out of $\mathbb{Z}/n\mathbb{Z}$ by $i \circ j = \frac{i+j}{2}$ $\frac{1}{2}$, since $2 \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. For even $2n$, you can partition $\mathbb{Z}/2n\mathbb{Z}$ into $A = \{0, \ldots, n-1\}$ and $B = \{n, \ldots, 2n-1 = -1\}$. Then for the equation $y = 2x$, denote by A_y the solution x in the set A, and denote by B_y the solution x in the set B. Then

$$
i \circ j = \begin{cases} A_{i+j} & i+j \text{ is even} \\ B_{i+j-1} & i+j \text{ is odd} \end{cases}
$$

is a half-idempotent commutative quasigroup.

The Skolem Construction ($v \equiv 1 \mod 6$): Let Q be a half-idempotent commutative quasigroup of order $2n$, where $Q = \{1, \ldots, 2n\}$. Define $S = \{\infty\} \cup (Q \times \{a, b, c\})$. Define T as following three types:

1. For $1 \leq i \leq n$, $\{(i, a), (i, b), (i, c)\}\in T$.

2. For
$$
1 \le i \le n
$$
, $\{\infty, (n+i, a), (i, b)\}\,$, $\{\infty, (n+i, b), (i, c)\}\,$, $\{\infty, (n+i, c), (i, a)\}\in T$.

3. For $1 \leq i \leq j \leq 2n$, $\{(i, a), (i, a), (i \circ j, b)\}, \{(i, b), (i, b), (i \circ j, c)\}, \{(i, c), (i, c), (i \circ j, c)\}$ $j, a) \} \in T$.

Then (S, T) is a Steiner triple system.

Proof. Let us again turn to Exercise 1.1.4. Counting up the triples of T, we get n triples of Type 1, 3n triples of Type 2, and $3 \times 2n(2n-1)/2 = 6n^2 - 3n$ triples of Type 3. Adding these up, we get $|T| = 6n^2 + n$. Note that with $v = 6n + 1$, we have $v(v-1)/6 = (6n+1)(6n)/6 =$ $6n^2 + n$. And so $|T| = v(v-1)/6$.

Next, we must show that every pair is present in at least one triple of T.

- First let us consider pairs of the form $\{(i, p), (j, q)\}\$ where $i, j \in Q$ and $p, q \in \{a, b, c\}$. If $i = j \leq n$, then $\{(i, p), (j, q)\}$ is in a triple of Type 1.
- If $i = j > n$, then write $i = j = k + n$ for some $k \in Q$. So we wish to find a triple of T containing $\{(k+n, p), (k+n, q)\}$. Suppose that $q = p + 1$. Then we wish to find an $\ell \in Q$ such that $\{(\ell, p), (k + n, p), (k + n, q = p + 1)\}\in T$. This is a Type 3 triple. This is true if $\ell \circ (k + n) = k + n$. Because Q is a quasigroup, ℓ exists and is unique. So the pair $\{(i, p), (j, q)\}$ is in at least one triple. The same goes for if $p = q + 1$. (NOTE: importantly, $\ell \neq k + n$ because in a half-idempotent quasigroup $(k+n) \circ (k+n) = k \neq k+n.$
- Now suppose $p = q$. Then $\{(i, p), (j, p)\}$ is in the Type 3 triple $\{(i, p), (j, p), (i \circ j, p+1)\}$.
- Now suppose $i \neq j$ and $p \neq q$. Suppose $j = n + i$ and $p = q + 1$. then $\{(i, p), (j, q)\}$ is in the Type 2 triple $\{\infty, (j, q), (i, p)\}.$
- Now suppose $j = n + i$ and $q = p + 1$. Then $\{(i, p), (i, q)\}\$ is in the Type 3 triple $\{(i, p), (x, p), (j, q)\}\$ where x solves $i \circ x = j$. Note it is impossible that $x = i$ because $i \circ i = i$ since $i \leq n$ and Q is half-idempotent.
- Now suppose $i \neq j$ do not satisfy $|i-j|=n$ and $p \neq q$. Suppose $q = p + 1$. Then we want to find an $x \in Q$ such that $\{(i, p), (x, p), (j, q)\}$ is a Type 3 triple. Then $i \circ x = j$. It is impossible that $x = i$, because $i - (i \circ i) = \begin{cases} 0 & i \leq n \\ 0 & j \end{cases}$ $n \quad i > n$. The former case contradicts $i \neq j$ and the latter case contradicts $|i - j| \neq n$. Thus x truly provides us with a Type 3 triple.
- Finally, consider the pair $\{\infty, (i, p)\}\$. If $i \leq n$, then $\{\infty, (i, p), (n + i, p 1)\}\$ is a Type 2 triple and if $i > n$ then $\{\infty, (i, p), (i - n, p + 1)\}\$ is a Type 2 triple.

Those are all the possible pairs!!! They are all in some kind of triple in T , so by Exercise 1.1.4, we are done!!! \Box

So this is a method of constructing a $([6n + 1]_{[3n]}, [6n^2 + n]_3)$ -configuration, I suppose. We can make a $(7_3, 7_3)$, a $(13_6, 26_3)$, $(19_9, 57_3)$, a $(25_{12}, 100_3)$ etc.

Example JK3. Consider the half-idempotent commutative quasigroup Q represented by $\sqrt{ }$ 1 4 2 3 \setminus

the matrix $\overline{}$ 4 2 3 1 2 3 1 4 3 1 4 2 . Then we can construct the $(13₆, 26₃)$ Steiner triple system on

 $S = {\infty} \cup (\hat{Q} \times {a, b, c})$ has two triples of Type 1:

$$
\{(1,a),(1,b),(1,c)\},\{(2,a),(2,b),(2,c)\},
$$

six triples of Type 2:

$$
\{\infty, (3, a), (1, b)\}, \{\infty, (3, b), (1, c)\}, \{\infty, (3, c), (1, a)\}, \{\infty, (4, a), (2, b)\}, \{\infty, (4, b), (2, c)\}, \{\infty, (4, c), (2, a)\},
$$

and eighteen triples of Type 3:

$$
\{(1, a), (2, a), (4, b)\}, \{(1, b), (2, b), (4, c)\}, \{(1, c), (2, c), (4, a)\}, \{(1, a), (3, a), (2, b)\}, \{(1, b), (3, b), (2, c)\}, \{(1, c), (3, c), (2, a)\}, \{(1, a), (4, a), (3, b)\}, \{(1, b), (4, b), (3, c)\}, \{(1, c), (4, c), (3, a)\}, \{(2, a), (3, a), (3, b)\}, \{(2, b), (3, b), (3, c)\}, \{(2, c), (3, c), (3, a)\}, \{(2, a), (4, a), (1, b)\}, \{(2, b), (4, b), (1, c)\}, \{(2, c), (4, c), (1, a)\}, \{(3, a), (4, a), (4, b)\}, \{(3, b), (4, b), (4, c)\}, \{(3, c), (4, c), (4, a)\},
$$

Pairwise Balanced Designs There is no Steiner triple system of order $6n + 5$, but we can generalize the concept as a pairwise balanced design to approximate.

Definition 1.4.1. A pairwise balanced design is a set of elements S together with set of blocks $B \subseteq 2^S$ such that every pair of elements of S is in exactly one block in B. (That is, it is like a Steiner triple system without the requirement that all the blocks are size 3, or indeed all the same size at all!)

Example 1.4.1. $S = \{1, 2, ..., 11\}$ and B contains the following 16 blocks:

$$
\{1,2,3,4,5\} \{1,6,7\} \{1,8,9\} \{1,10,11\} \{2,6,9\} \{2,7,11\} \{2,8,10\} \{3,6,11\} \{3,7,8\} \{3,9,10\} \{4,6,10\} \{4,7,9\} \{4,8,11\} \{5,6,8\} \{5,7,10\} \{5,9,11\} \{5,9,11\}
$$

Construction not recorded. Quasigroups with holes and Steiner triple systems:

Let $Q = \{1, 2, ..., 2n\}$ and let $H = \{\{1, 2\}, \{3, 4\}, ..., \{2n - 1, 2n\}\}\$. In what follows, the two-element subsets $\{2i - 1, 2i\}$ are called **holes**. A quasigroup Q with holes H is a quasigroup (Q, \circ) of order $2n$ in which for each $h \in H$, (h, \circ) is a subquasigroup of (Q, \circ) .

Exercise 1.5.10. Let $({1, 2}, \circ_1)$ be any quasigroup of order 2 (there are two of them), and let (Q, \circ_2) be an idempotent quasigroup of order $2n+1$ (for example, $a \circ b = \frac{a+b}{2} \mod 2n+1$, which always exists since 2 is a unit mod $2n + 1$.

Let $S = \{1, 2\} \times Q$. Define a binary operation on S by $(a, b) \otimes (c, d) = (a \circ_1 c, b \circ_2 d)$. Then (S, \otimes) is a commutative quasigroup of order $4n + 2$ with holes $H = \{ \{(1, i), (2, i)\} : i \in \mathbb{Q} \}.$

Proof. The fact that S is a commutative quasigroup is immediate as both $\{1, 2\}$ and Q are commutative quasigroups. Then note that $(1, i) \otimes (1, i) = (1 \circ_1 1, i), (1, i) \otimes (2, i) = (1 \circ_1 2, i),$ $(2, i) \otimes (1, i) = (2 \circ_1, i) = (1 \circ_1 2, i)$, and $(2, i) \otimes (2, i) = (2 \circ_1 2, i)$, which forms a subquasigroup since $({1, 2}, \circ_1)$ is a quasigroup.

Maybe I want to show that if Q is a quasigroup and with holes H of size 2 and $h, h' \in H$ with $h \cap h' \neq \emptyset$, then $h = h'$. Then (h, \circ) is a quasigroup and (h', \circ) is a quasigroup. Then is $(h \cap h', \circ)$ a quasigroup? Not necessarily. Well, let $a \in h \cap h'$, so $h = \{a, b\}$ and $h' = \{a, b'\}.$ Then

$$
\begin{pmatrix} \circ & a & b \\ a & a \circ a & a \circ b \\ b & b \circ a & b \circ b \end{pmatrix}
$$

is a quasigroup and

is a quasigroup. In order for both of these to be true, $a \circ a = a$. Thus $a \circ b = b \circ a = b$ and $a \circ b' = b' \circ a = b'$ and $b \circ b = b' \circ b' = a$. So we have

$$
\begin{pmatrix} \circ & a & b \\ a & a & b \\ b & b & a \end{pmatrix}
$$

$$
\begin{pmatrix} \circ & a & b' \\ a & a & b' \\ b' & b' & a \end{pmatrix}.
$$

and

 \Box

Then

$$
\begin{pmatrix}\n0 & a & b & b' \\
a & a & b & b' \\
b & b & a & * \\
b' & b' & * & a\n\end{pmatrix}
$$

Actually my claim is not true! For example, in

the number 1 forms a subquasigroup with 2, 3, and 4, so the holes are $\{1, 2\}$, $\{1, 3\}$, and ${1, 4}.$

It could be the definition of holes requires a pairwise partition of the quasigroup. Whatever... QED or something.

BASICALLY BASICALLY BASICALLY Exercise 1.5.10 is all about taking an idempotent commutative $2n + 1$ quasigroup and basically duplicating every entry as its own fucking individual 2×2 quasigroup, like so

$$
Q = \begin{pmatrix} \circ & A & B & C \\ A & A & C & B \\ B & C & B & A \\ C & B & A & C \end{pmatrix}, A = \begin{pmatrix} \circ & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} \circ & 3 & 4 \\ 3 & 3 & 4 \\ 4 & 4 & 3 \end{pmatrix}, C = \begin{pmatrix} \circ & 5 & 6 \\ 5 & 5 & 6 \\ 6 & 6 & 5 \end{pmatrix}
$$

and so

$$
Q = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 2 & 5 & 6 & 3 & 4 \\ 2 & 2 & 1 & 6 & 5 & 4 & 3 \\ 3 & 5 & 6 & 3 & 4 & 1 & 2 \\ 4 & 6 & 5 & 4 & 3 & 2 & 1 \\ 5 & 3 & 4 & 1 & 2 & 5 & 6 \\ 6 & 4 & 3 & 2 & 1 & 6 & 5 \end{pmatrix}
$$

.

That's why it only works if $\#Q = 2 \mod 4$. If $\#Q = 0 \mod 4$ I suppose we can start with a half-idempotent commutative quasigroup and doing the same sorta thing?

Let's try it:

$$
Q = \begin{pmatrix} A & D & B & C \\ D & B & C & A \\ B & C & A & D \\ C & A & D & B \end{pmatrix}
$$

is a half-idempotent commutative quasigroup. Then let $A =$ $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ and I can already tell this isn't going to work...

Let $({1, \ldots, 2n}, \circ)$ be a commutative quasigroup with holes H. Then

- 1. $({\{\infty\}} \cup ({1, 2, ..., 2n} \times {a, b, c}), B)$ is an STS(6n + 1) where B is:
	- (a) for $1 \le i \le n$, let B_i contain the triples in an STS(7) on the symbols $\{\infty\} \cup (\{2i 1, 2i\} \times \{a, b, c\}$ and $B_i \subseteq B$, and
	- (b) for $1 \le i \ne j \le 2n$, $\{i, j\} \notin H$ place the triples $\{(i, a), (j, a), (i \circ j, b)\}, \{(i, b), (j, b), (i \circ j), (j \circ j) \}$ $j, c)$, and $\{(i, c), (j, c), (i \circ j, a)\}\$ in B.
- 2. $({\infty_1, \infty_2, \infty_3} \cup ({1, 2, ..., 2n} \times {a, b, c}), B'$ is an STS(6n + 3) where B' replaces (a) in 1. with:
	- (a) for $1 \le i \le n$ let B' contain the triples in an STS(9) on the symbols $\{\infty_1, \infty_2, \infty_3\}$ $({2i-1, 2i} \times {a, b, c})$ in which ${\infty_1, \infty_2, \infty_3}$ is a triple.
- 3. $({\infty_1, \infty_2, \infty_3, \infty_4, \infty_5} \cup ({1, 2, \ldots, 2n} \times {a, b, c}), B'$ is a PBD(6n + 5) with one block of size 5 and the rest of size 3 where B'' replaces (a) of 1. with
	- (a) for $1 \leq i \leq n$ B'' contains the blocks in a PBD(11) on the symbols $\{\infty_1, \ldots, \infty_5\}$ $({2i-1, 2i} \times {a, b, c})$ in which ${\infty_1, \ldots, \infty_5}$ is a block.

Let's use Exercise 1.1.4 to prove that constructions 1 and 2 are indeed Steiner triple systems.

Proof. First let us start with construction 1. First we want to show that each pair is in at least one triple. First take $\{\infty, (2i, a)\}\$ as the pair. Then this pair is in the triple in the Steiner triple system STS(7) on the symbols $\{\infty\} \cup (\{2i-1, 2i\} \times \{a, b, c\})$. Same for $2i-1$ and b and c.

Now let us consider the pair $\{(i, a), (j, a)\}\$. First, if $\{i, j\} \in H$ then $\infty \cup (\{i, j\} \times \{a, b, c\})$ forms an STS(7) and so $\{(i, a), (j, a)\}\$ is in one of those triples. Now if $\{i, j\}$ is not a hole, then this pair is in the triple $\{(i, a), (j, a), (i \circ j, b)\}$. (Same for b and c.) Now let us consider the pair $\{(i, a), (j, b)\}\$ where $\{i, j\}\$ is not a hole. Then there is a $k \in Q$ such that $i \circ k = j$ and so $\{(i, a), (k, a), (j, b)\}\$ is a triple containing the pair. (Same for a, b, c whatever.) Thus every pair is in at least one triple presto!

Now we must show that the number of triples is at most $(6n+1)(6n)/6 = 6n^2 + n$. There are 7n triples of type (a) and $3(\frac{2n(2n-2)}{2}) = 3(n)(2n-2) = 6n^2 - 6n$ triples of type (b). NOTE: it is not $3\binom{2n}{2}$ $\binom{2n}{2}$ because the type (b) triples preclude $\{i, j\} \in H$, so it is $3(\frac{2n(2n-2)}{2})$ instead of $3\left(\frac{2n(2n-1)}{2}\right)$.

Adding these together, we have $7n + 6n^2 - 6n = 6n^2 + n$ as desired. Thus Exercise 1.1.4 works to form a Steiner triple system here.

Now consider the type 2. system. First, every pair is in at least one triple. Let us start with the pair $\{\infty, (i, a)\}\$. Then $\{\infty\} \cup (\{i, j\} \times \{a, b, c\})$ with $\{i, j\} \in H$ is an STS(9) and so the pair $\{\infty, (i, a)\}\$ is in one of the triples there. Same for b and c. Then consider $\{(i, a), (j, a)\}.$ If $\{i, j\} \in H$, then we have the same STS(9) as before. If $\{i, j\} \notin H$, then the pair $\{(i, a), (j, a)\}\$ is in a triple $\{(i, a), (j, a), (i \circ j, b)\}\$ of type (b) like in construction 1. Same for $\{(i, a), (j, b)\}.$

Now the fun part. We want to show there are at most $(6n+3)(6n+2)/6 = (36n^2 +$ $30n + 6/6 = 6n^2 + 5n + 1$ triples. There are 12 triples in each STS(9), giving ostensibly 12n triples of type (a'). But $\{\infty_1, \infty_2, \infty_3\}$ is a triple shared by each STS(9). So there are really $11n + 1$ triples of type (a'). There are also $3\frac{(2n)(2n-2)}{2} = 6n^2 - 6n$ triples of type (b). So adding these together, we have $11n + 1 + 6n^2 - 6n = 6n^2 + 5n + 1$ triples. So Exercise 1.1.4 works. \Box