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Consider the Grassmannian Gr(k, n) of k-planes in a vector space V of dimension n and
a full flag V : 0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn = V , where dimVi = i. Schubert cycles are dictated
by a decreasing sequence a = (a1, . . . , ak) by n− k ≥ a1 ≥ a2 ≥ · · · ≥ ak ≥ 0. Then

Σa(V) = {Λ ∈ Gr(k, n) : dim(Vn−k+i−ai ∩ Λ) ≥ i for all i}.

For example, in Gr(2, 5) there are 10 decreasing sequences of length 2, corresponding to
10 Schubert cycles.

Σ3,3 = {Λ : dim(V1 ∩ Λ) ≥ 1, dim(V2 ∩ Λ) ≥ 2} = {V2}.

Σ3,2 = {Λ : dim(V1 ∩ Λ) ≥ 1, dim(V3 ∩ Λ ≥ 1)} = {Λ : V1 ⊆ Λ ⊆ V3}.

Σ3,1 = {Λ : V1 ⊆ Λ ⊆ V4}.

Σ3,0 = {Λ : V1 ⊆ Λ}.

Σ2,2 = {Λ : dim(V2 ∩ Λ) ≥ 1, dim(V3 ∩ Λ) ≥ 2} = {Λ : dim(V2 ∩ Λ) ≥ 1,Λ ⊆ V3}.

Σ2,1 = {Λ : dim(V2 ∩ Λ) ≥ 1,Λ ⊆ V4}.

Σ2,0 = {Λ : dim(V2 ∩ Λ) ≥ 1}.

Σ1,1 = {Λ : dim(V3 ∩ Λ) ≥ 1,Λ ⊆ V4} = {Λ : Λ ⊆ V4}∗.

Σ1,0 = {Λ : dim(V3 ∩ Λ) ≥ 1}.

Σ0,0 = {Λ : dim(V4 ∩ Λ) ≥ 1} = Gr(2, 5).

∗Note if Λ ⊆ V4 then Λ necessarily has nontrivial intersection with V3, because dim(Λ) =
2. We can also write Σa in matrix form where a determined the number of extra zeroes in
each row of the 2× 5 matrix (

∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

)
where we can choose e1, . . . , ei as our basis elements of Vi. Then

Σ3,3 =

(
∗ 0 0 0 0
∗ ∗ 0 0 0

)
.

Σ3,2 =

(
∗ 0 0 0 0
∗ ∗ ∗ 0 0

)
.
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Σ3,1 =

(
∗ 0 0 0 0
∗ ∗ ∗ ∗ 0

)
.

Σ3,0 =

(
∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗

)
.

Σ2,2 =

(
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0

)
.

Σ2,1 =

(
∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0

)
.

Σ2,0 =

(
∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗

)
.

Σ1,1 =

(
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

)
.

Σ1,0 =

(
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗

)
.

Σ0,0 =

(
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

)
.

The only thing to keep in mind is the two rows must be linearly independent in order to
make a plane in the first place. For example, the plane ⟨e1+2e2, e3− e4⟩ ∈ Σ2,1, represented

by

(
1 2 0 0 0
0 0 1 −1 0

)
.

Given to Schubert sequences a and b, call b ≤ a if bi ≤ ai for some i. Furthermore, define
|a| =

∑k
i=1 ai. Then Σb ⊆ Σa for all b ≥ a. For an integer λ, we will denote Σλ,0,...,0 by Σλ

and Σλ,λ,...,λ by Σλk .
The Schubert cell Σ◦

a is defined by Σa \
(⋃

b>aΣb

)
. The Schubert cell is an affine space

isomorphic to Ak(n−k)−|a|. We can show this with the specific example

Σ3,2,2,1 =


∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

 ∈ Gr(4, 9).

In this case the Schubert cell is given by

Σ◦
3,2,2,1 =


∗ ∗ 1 0 0 0 0 0 0
∗ ∗ ∗ ∗ 1 0 0 0 0
∗ ∗ ∗ ∗ ∗ 1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0


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and we can then force the rows to be linearly independent by performing row subtractions
and getting

Σ3,2,2,1
∼=


∗ ∗ 1 0 0 0 0 0 0
∗ ∗ 0 ∗ 1 0 0 0 0
∗ ∗ 0 ∗ 0 1 0 0 0
∗ ∗ 0 ∗ 0 0 ∗ 1 0


and we can see that dimΣ◦

3,2,2,1 = 12 = 4(9− 4)− (3 + 2 + 2 + 1). So indeed Σ◦
3,2,2,1 = A12.

In this example, we can see for example that ⟨e1 − e2 + e3, 2e1 + e4 + e5, e6, e8⟩ ∈ Σ◦
3,2,2,1,

corresponding to the matrix 
1 −1 1 0 0 0 0 0 0
2 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0

 .

So in general we can see why Σ◦
a
∼= Ak(n−k)−|a| and in particular Σ◦

0
∼= Ak(n−k) and so

dim(Σ0 = Gr(k, n)) = k(k − n). (Not
(
n
k

)
, which is the dimension of the wedge product∧k V , of which the Grassmannian is a proper subset.) There are in total

(
n
k

)
Schubert cycles

for Gr(k, n), and since the Schubert cycles generate A(Gr(k, n)) as an abelian group, we

have A(Gr(k, n)) ∼= Z(
n
k).

We can also see that (σn−k)
k = (σ1k)

n−k = σ(n−k)k ∈ Ak(n−k)(Gr(k, n)). We can use the
fact that σn−k is the class of all k-planes containing a line of a flag. Then σk

n−k is the class of
all k-planes containing k lines, which is a unique k-plane, so σ(n−k)k . Furthermore, σ1k is the

class of all k-planes contained in a given n− 1-plane H. Then σn−k
1k

is the class of k-planes

contained in the intersection of n−k general n−1 planes. Since
⋂n−k

i=1 Hi = n− (n−k) = k,
we get a unique k-plane again, so the class is σ(n−k)k .

An alternate way to think of the dimension of G(2, n): Consider the Schubert cycle Σ1(V)
for some flag V . In Pn−1, this Schubert cycle represents the space of lines that touch a fixed
n− 3-plane V . The dimension of this space must be (n− 2) + (n− 3)-dimensional because
n − 2 is the dimension of lines through a fixed point of Pn−1 (the point of contact with V )
and n − 3 is the dimension of V . (Why do lines contained in V not bring the dimension
down? I guess it’s because only a closed subset of lines are actually contained in V .) Thus
the dimension of Σ1(V) must be 2n − 5 and since Σ1(V) is codimension 1 in G(2, n), the
dimension of G(2, n) must be 2n− 4 = 2(n− 2).

We can then induct on k: suppose that dimGr(k, n) = k(n − k), then we will calculate
dimGr(k + 1, n+ 1). The Schubert cycle Σ1(V) represents the space of k-planes in Pn that
contact a given n−k−1-plane at a point. The space of k-planes touching a given point in Pn

is Gr(k, n), which has dimension k(n− k) by the induction hypothesis. So the dimension of
Σ1(V) must be k(n−k)+n−k−1 = kn−k2+n−k−1. Finally, since Σ1(V) has codimension
1 in Gr(k+1, n+1), we have dimGr(k+1, n+1) = kn−k2+n−k−1+1 = (k+1)(n−k).

Pieri’s formula. For any Schubert class σa ∈ A(G) and any integer λ,

σλ · σa =
∑

|c|=|a|+λ

ai≤ci≤ai−1

σc.
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For example, in Gr(4, 9),

σ2 · σ3,2,2,1 = σ3,3,2,2 + σ5,2,2,1 + σ4,3,2,1 + σ4,2,2,2.

Giambelli’s formula.

σa1,a2,...,ak =

∣∣∣∣∣∣∣∣∣∣∣

σa1 σa1+1 σa1+2 · · · σa1+k−1

σa2−1 σa2 σa2+1 · · · σa2+k−2

σa3−2 σa3−1 σa3 · · · σa3+k−3
...

...
...

. . .
...

σak−k+1 σak−k+2 σak−k+3 · · · σak

∣∣∣∣∣∣∣∣∣∣∣
.

For example,

σ2,1 =

∣∣∣∣σ2 σ3

σ0 σ1

∣∣∣∣ = σ2σ1 − σ3.

Another example,

σ3,2,2,1 =

∣∣∣∣∣∣∣∣
σ3 σ4 σ5 σ6

σ1 σ2 σ3 σ4

σ0 σ1 σ2 σ3

σ−2 σ−1 σ0 σ1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
σ3 σ4 σ5 0
σ1 σ2 σ3 σ4

1 σ1 σ2 σ3

0 0 1 σ1

∣∣∣∣∣∣∣∣
= σ3

1σ5 − σ2
1σ2σ4 − σ2

1σ
2
3 + σ1σ

2
2σ3 + 2σ1σ2σ4 − σ2σ

2
3.

To prove Pieri’s and Giambelli’s formulae, we will need some background.

Definition Schubert Dual-bert. Given a decreasing sequence a = (a1, . . . , ak) serving as
a Schubert index, we will define the dual index a∗ = (n− k − ak, . . . , n− k − a1).

Definition Transverse Flags. We say that a pair of flags V and W are transverse if any
of the following equivalent conditions hold:

1. Vi ∩Wn−i = 0 for all i.

2. There exists a basis e1, . . . , en for V in terms of which

Vi = ⟨e1, . . . , ei⟩ and Wj = ⟨en−(j−1), . . . , en⟩.

Example 1. Let V be the flag in C5 given by the ordered basis

{(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)} = {vi}5i=1.

Let W be the flag in C5 given by the ordered basis

{(1, 2, 3, 4, 5), (5, 6, 7, 8, 9), (3, 0, 6, 0, 9), (2, 5, 2, 0, 1), (3, 1, 1, 1, 1, 1)} = {wi}5i=1.

First note that V and W are in fact flags; this is clear with V , and for W we can confirm∣∣∣∣∣∣∣∣∣∣
1 2 3 4 5
5 6 7 8 9
3 0 6 0 9
2 5 2 0 1
3 1 1 1 1

∣∣∣∣∣∣∣∣∣∣
= 408 ̸= 0.
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Now we will show that V andW are transverse. Following the first criterion, this is equivalent
to showing

{v1, w1, w2, w3, w4},
{v1, v2, w1, w2, w3},
{v1, v2, v3, w1, w2},
{v1, v2, v3, v4, w1}

are all bases for C5. A quick calculation confirms that the determinants are all nonzero, so
they are all bases. Therefore V and W are transverse flags.

Let’s now construct a basis {e1, . . . , e5} for C5 such that

Vi = ⟨e1, . . . , ei⟩ and Wj = ⟨en−(j−1), . . . , en⟩.

Because of how V is constructed, we know that

e1 = (α1, 0, 0, 0, 0)

e2 = (α2, β2, 0, 0, 0)

e3 = (α3, β3, γ3, 0, 0)

e4 = (α4, β4, γ4, δ4, 0)

e5 = (α5, β5, γ5, δ5, ε5)

Where α1, β2, γ3, δ4, ε5 ̸= 0. Because we know W1 = ⟨(1, 2, 3, 4, 5)⟩, we can choose e5 =
(1, 2, 3, 4, 5). To make e4, we need to satisfy ⟨e4, (1, 2, 3, 4, 5)⟩ = ⟨(5, 6, 7, 8, 9), (1, 2, 3, 4, 5)⟩.
To do this, we can set e4 equal to a linear combination of e5 and w2 with 0 in the fifth
coordinate: for example

5w2 − 9e5 = (16, 12, 8, 4, 0) ∼ (4, 3, 2, 1, 0) = e4.

Now we can use e4, e5, and w3 to find e3: we know that ⟨e3, e4, e5⟩ = ⟨w1, w2, w3⟩, so we can
annihilate the fifth coordinate of w3 by the linear combination

5w3 − 9e5 = (6,−18, 3,−16, 0)

and then annihilate the fourth coordinate by the linear combination

(6,−18, 3,−16, 0) + 16e4 = (70, 30, 35, 0, 0) ∼ (14, 6, 7, 0, 0) = e3.

Now we can use e5, e4, e3, and w4 to find e2: we know that ⟨e2, e3, e4, e5⟩ = ⟨w1, w2, w3, w4⟩ =
⟨e, so we can annihilate the fifth coordinate of w4 by the linear combination

5w4 − e5 = (9, 23, 7,−4, 0)

and then annihilate the fourth coordinate by

(9, 23, 7,−4, 0) + 4e4 = (25, 35, 15, 0, 0) ∼ (5, 7, 3, 0, 0)
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and finally annihilate the third coordinate by

7(5, 7, 3, 0, 0)− 3e3 = (−7, 31, 0, 0, 0) = e2.

Then e1 can still be v1 = (1, 0, 0, 0, 0). Essentially, we performed row operations (except for
swapping rows) to turn the matrix

3 1 1 1 1
2 5 2 0 1
3 0 6 0 9
5 6 7 8 9
1 2 3 4 5

 into the lower-triangular matrix


1 0 0 0 0
−7 31 0 0 0
14 6 7 0 0
4 3 2 1 0
1 2 3 4 5

 .

Essentially, use row operations (EXCEPT ROW SWAPS) to get one invertible matrix into
a lower-triangular matrix.

Example 2. For a non-example of a pair of transverse flags, pick once again V coming from
the ordered basis

{(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)} = {vi}5i=1

and now pick W as coming from the ordered basis

{(1, 2, 3, 4, 5), (5, 6, 7, 8, 9), (7, 8, 10, 12, 14), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)} = {w1}5i=1.

First we confirm that {wi}5i=1 is in fact a basis (the determinant is −4). Now note that
{v1, v2, w1, w2, w3} is NOT a basis for C5, so V and W are not transverse. We can also see
that the matrix 

0 0 0 0 1
0 0 0 1 0
7 8 10 12 14
5 6 7 8 9
1 2 3 4 5


cannot be made lower-triangular via non-swap row operations. Using the row operations
r4 → 5r4 − 9r5, r3 → 5r3 − 14r5, and r1 → 5r1 − r5, we get

−1 −2 −3 −4 0
0 0 0 1 0
21 6 8 4 0
16 12 8 4 0
1 2 3 4 5

 .

Then using r3 → r3 − r4 and r2 → 4r2 − r4 and r1 → r1 + r4 we get
15 10 5 0 0
−16 −12 −8 0 0
5 −6 0 0 0
16 12 8 4 0
1 2 3 4 5

 .
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Notice now that the entry in the third row and third column is 0, so we will need to swap
rows to continue making this lower-triangular.

For example, if we swap rows r2 ↔ r3 we get the matrix
15 10 5 0 0
5 −6 0 0 0

−16 −12 −8 0 0
16 12 8 4 0
1 2 3 4 5


and can then use the operations r1 → 8r1 + 5r2 to get

40 20 0 0 0
5 −6 0 0 0

−16 −12 −8 0 0
16 12 8 4 0
1 2 3 4 5

 .

Finally, we an use the row operation r1 → 6r1 + 20r2 to get the lower-triangular matrix
340 0 0 0 0
5 −6 0 0 0

−16 −12 −8 0 0
16 12 8 4 0
1 2 3 4 5

 .

What this demonstrates is that the ordered basis

{(1, 2, 3, 4, 5), (5, 6, 7, 8, 9), (0, 0, 0, 1, 0), (7, 8, 10, 12, 14), (0, 0, 0, 0, 1)}

induces a flag transversal with V , given by taking the original ordered basis for W and
swapping the vectors w3 and w4.

We will now prove that the two definitions of transerval flags are actually equivalent.

Proof. First assume that there is a basis {e1, . . . , en} for Cn where Vi = ⟨e1, . . . , ei⟩ and
Wj = ⟨en−(j−1), . . . , en⟩. Then dim(Vi ∩Wn−i) = dim(⟨e1, . . . , ei⟩ ∩ ⟨ei+1, . . . , en⟩) = 0.

Now suppose dim(Vi ∩ Wn−i) = 0 for all i, where V is given by the ordered basis
{v1, . . . , vn} and W is given by the ordered basis {w1, . . . , wn}. Assume without loss of
generality that V is the standard flag (that is, the flag induced by the standard ordered basis
on Cn). Then Vi ⊕Wn−i = Cn, so

det



v1
...
vi

wn−i
...
w1


̸= 0
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for all 1 ≤ i ≤ n− 1. Then since

det


v1
...

vn−1

w1

 ̸= 0,

so w1(n) ̸= 0. Then since

det


v1
...

vn−2

w2

w1

 ̸= 0,

we know that after the row operation rn−1 → w1(n)rn−1−wn−1(n)rn that annihilates the nth

coordinate of rn−1, the (n−1)th coordinate of rn−1 must be nonzero. Otherwise, the row rn−1

would be a linear combination of rows r1, . . . , rn−2 = v1, . . . , vn−2, which is a contradiction.
Continuing, since for some i we can use row operations to turn

v1
...
vi

wn−i
...
w1


into



v1
...
vi
ei+1
...

w1 = en


where ej(k) = 0 for all i+ 1 ≤ j ≤ n and j + 1 ≤ k ≤ n. Then because

det



v1
...

vi−1

wn−i+1
...
w1


̸= 0

and we can use row operations to turn

v1
...

vi−1

wn−i+1

wn−i
...
w1


into



v1
...

vi−1

wn−i+1

ei+1
...
en


,

we can see that using row operations to annihilate the > i-coordinates of ri will result in an
ith row that necessarily will have a nonzero entry in the ith coordinate (otherwise it would
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be a linear combination of the above rows, which is a contradiction). This new row will be
called ei.

Continuing this way, we can see that we can construct the basis {e1, . . . , en} by using
these row operations to make a lower-triangular matrix L, which necessarily will have nonzero
entries along the main diagonal. Reading the rows of L top-to-bottom yields the standard
flag V and reading the rows bottom-to-top yields the flag W because each row rj of L is a
linear combination of the rows underneath with vectors from Wj.

If V is not the standard flag, we can perform a change of basis B to make BV the standard
flag, and then BW is transerval to BV if and only if W is transversal to V . So there ex-
ists a basis {e1, . . . , en} on Cn such that BVi = ⟨e1, . . . ei⟩ and BWj = ⟨en−(j−1), . . . , en⟩,
so {B−1e1, . . . , B

−1en} is a basis for Cn such that Vi = ⟨B−1e1, . . . , B
−1ei⟩ and Wj =

⟨B−1en−(j−1), . . . , B
−1en⟩. Thus we have proven the equivalence.

Note the two transverse pairs may be carried to each other by a linear automorphism of
V . Moreover, transverse pairs form a dense open subset in the space of all pairs of flags,
so any statement proves for a general pair of flags (such as the general transversality of the
intersection Σa(V) ∩ Σb(W) ⊆ G) holds for any transverse pair, and vice versa.

Proposition 4.6. If V and W are transverse flags in V and Σa(V) and Σb(W) are Schubert
cycles with |a| + |b| = k(n − k), then Σa(V) and Σb(W) intersect transversely at a unique
point if b = a∗ and are disjoint otherwise.

Proof. Since the two flags V and W are transverse, the Schubert cycles will meet generically
transversely, and hence (since the intersection is zero-dimensional) transversely. Thus

deg σaσb = #(Σa(V) ∩ Σb(W))

= #

{
Λ :

dim(Vn−k+i−ai ∩ Λ) ≥ i,

dim(Wn−k+i−bi ∩ Λ) ≥ i,
for all i

}
.

To evaluate the cardinality of this set, consider the conditions in pairs: that is, for each i,
consider the ith condition associated to the Schubert cycles Σa(V):

dim(Vn−k+i−ai) ∩ Λ) ≥ i

in combination with the (k − i+ 1)th condition assocated to Σb(W):

dim(Wn−i+1−bk−i+1
∩ Λ) ≥ k − i+ 1.

If these conditions are both satisfied, then the subspaces

Vn−k+i−ai ∩ Λ and Wn−i+1−bk−i+1
∩ Λ,

having greather than complementary dimension in Λ (Λ is k-dimensional), must have nonzero
intersection; in particular, we must have

Vn−k+i−ai ∩Wn−i+1−bk−i+1
̸= 0,
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and since the flags V and W are general, this in turn says that we must have

n− k + i− ai + n− i+ 1− bk−i+1 ≥ n+ 1,

or in other words
ai + bk−i+1 ≤ n− k

or
(k − i+ ai) + (i− 1 + bk−i+1) ≤ n− 1.

If equality holds in this last inequality, the subspaces Vn−k+i−ai and Wn−i+1−bk−i+1
will meet

in a one-dimensional vector space Γi, necessarily contained in Λ. (This last point is easier to
understand if you look back to the long inequality, rather than the simplified one. Or even
the last inequality, which would say that the sum of the codimensions is n−1, so the general
vector spaces meet at a line.)

We have thus seen that Σa(V) and Σb(W) will be disjoint unless ai + bk−i+1 ≤ n− k for
all i. But from the equality

|a|+ |b| =
k∑

i=1

(ai + bk−i+1) = k(n− k),

we see that if ai + bk−i+1 ≤ n− k for all i, then we must have ai + bk−i+1 = n− k for all i.
Moreover, in this case any Λ in the intersection Σa(V) ∩ Σb(W) must contain each of the k
subspaces Γi, so there is a unique such Λ, equal to the span of these one-dimensional spaces,
as required.

We now get an approach to determining the coefficients in the expression of the class of a
cycle as a linear combination of Schubert classes: if Γ ⊆ G is any cycle of pure codimension
m, we can write

[Γ] =
∑
|a|=m

γaσa.

To find the coefficient γa, we intersect both sides with the Schubert cycle Σa∗(V) = Σn−k−ak,...,n−k−ai(V)
for a general flag V ; we then have

γa = deg([Γ] · σa∗ = #(Γ ∩ Σa∗(V)).

This is the method of undetermined coefficients. Explicitly, we have:

Corollary 4.8. If α ∈ Am(G) is any class, then

α =
∑
|a|=m

deg(ασa∗) · σa.

In particular, if σa and σb ∈ A(G) are any Schubert classes on G = G(k, n), then the product
σaσb is equal to ∑

|c|=|a|+|b|

γa,b;cσc,

where
γa,b;c = deg(σaσbσc∗).

10
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We are now ready to prove Pieri’s formula.

Proof. By Corollary 4.8, Pieri’s formula is equivalent to the assertion that, for any Schubert
index c with |c| = |a|+ λ,

deg(σaσλσc∗) =

{
1 if ai ≤ ci ≤ ai−1 for all i

0 otherwise
.

To prove this, we will look at the corresponding Schubert cycles Σa(V), Σλ(U) and Σc∗(W),
defined with respect to general flags; we will show their intersection is empty if ci violates
the condition ai ≤ ci ≤ ai−1 for any i, and consists of a single point otherwise. Since general
flags are transverse, the intersection multiplicity will be 1 in the latter case.

By definition,
Σa(V) = {Λ : dim(Λ ∩ Vn−k+i−ai) ≥ i for all i}

and
Σc∗(W) = {Λ : dim(Λ ∩Wi+ck+1−i

) ≥ i for all i}.

Set
Ai = Vn−k+i−ai ∩Wk+1−i+ci ,

so that either Ai = 0 or dimAi = ci − ai + 1. (NOTE: The dimensions of Vn−k+i−ai and
Wk+1−i+ci add up to n+ 1 + ci − ai, so dimAi = 0 if ci − ai + 1 ≤ 0 or dimAi = ci − ai + 1
if ci − ai + 1 > 0.) Combining the ith condition in the first definition and the (k + 1 − i)th

condition in the second, we see that for any Λ ∈ Σa(V) ∩ Σc∗(W) we have

Λ ∩ Ai ̸= 0,

because dim(Bi = Λ∩Vn−k+i−ai) ≥ i and dim(Ci = Λ∩Wk+1−i+ci) ≥ k+1− i. So Bi and Ci

are subspaces of Λ whose dimensions add to k+1 = dim(Λ)+1, so they must have nontrivial
intersection within Λ. If ci < ai for some i then Ai = 0 so that Σa(V) ∩ Σc∗(W) = ∅, and
deg(σaσλσc∗) = 0, as required. Thus we may assume that ci ≥ ai for every i.

We claim that the Ai are linearly independent if and only if ci ≤ ai−1 for all i. To see
this, choose a basis ei so that Vi = ⟨e1, . . . , ei⟩ and W = ⟨en−j+1, . . . , en⟩. Then

Ai = ⟨en−ki−ci , . . . , en−k+i−ai⟩,

and the condition ci ≤ ai−1 amounts to the condition that the two successive ranges of
indices n− k + i− 1− ci−1, . . . , n− k + i− 1− ai−1 and n− k + i− ci, . . . , n− k + i− ai do
not overlap. In other words, if we let

A = ⟨A1, . . . , Ak⟩

be the span of the spaces Ai, then we have

dimA ≤
∑

ci − ai + 1− k + λ,

with equality holding if and only if ci ≤ ai−1 for all i.

11
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Now we introduce the conditions associated with the special Schubert cycle Σλ(U). this
is the set of k-planes that have nonzero intersection with a general linear subspace U =
Un−k+1−λ ⊆ V . For there to be any Λ ∈ Σa(V)∩Σc∗(W) satisfying this additional condition
requires that A ∩ U ̸= 0, and hence, since U is general, that dimA ≥ k + λ. Thus, if
ci ≥ ai−1 for any i, then we will have Σa(V) ∩ Σc∗(W) ∩ Σλ(U) = ∅. We can accordingly
assume ci ≤ ai−1 for all i, and hence dimA = k + λ.

Finally, since U ⊆ V is a general subspace of codimension k + λ − 1, it will meet A
in a one-dimensional subspace. Choose any nonzero vector v in this intersection. Since
A =

⊕
Ai, we can write v uniquely as a sum

v = v1 + · · ·+ vk with vi ∈ Ai.

Suppose now that Λ ∈ Σa(V)∩Σλ(U)∩Σc∗(W) satisfies all the Schubert conditions above.
Since Λ ⊆ A and Λ ∩ U ̸= 0, Λ must contain the vector v, and since Λ is spanned by its
intersections with the Ai, it follows that Λ must contain the vectors vi as well. Thus, we see
that the intersection Σa(V) ∩ Σλ(U) ∩ Σc∗(W) will consist of the single point corresponding
to the plane Λ = ⟨v1, . . . , vk⟩ spanned by the vi, and we are done.

We will now answer the following question: What is the degree of the Grassmannian
G(2, n+ 1) under the Plücker embedding? We observe first that, since the hyperplane class
on P(

∧2 kn+1) pulls back to the class σ1 ∈ A1(G(2, n+ 1)), we have

deg(G(2, n+ 1)) = deg(σ2n−2
1 ).

Recall that dimG(2, n + 1) = 2(n + 1 − 2) = 2n − 2. To evaluate this product, we make a
directed graph with the Schubert classes σa in G(2, n+1) as vertices and with the inclusions
among the corresponding Schubert cycles Σa(V) indicated by arrows (the graph shown is the
case n = 5):

12
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σ0

σ1

σ2 σ1,1

σ3 σ2,1

σ4 σ3,1 σ2,2

σ4,1 σ3,2

σ4,2 σ3,3

σ4,3

σ4,4

In terms of this graph, the rule for multiplication is simple: The product of any Schubert
class σa,b with σ1 is the sum of all immediate predecessors of σa,b– that is, the Schubert
classes in the row below σa,b that are connected to σa,b by an arrow. In particular, the degree
deg((σ1)

2n−2) of the Grassmannian is the number of paths upward through this diagram
starting with σn−1,n−1 (the bottom) and ending with σ0,0 (the top). If we designate such a
path by a sequence of n− 1 1’s and n− 1 2’s, corresponding to whether the first or second
index changes, reading from left to right, there are never more 1’s than 2’s. Equivalently, if
we use left and right parentheses for 2’s and 1’s respectively, this is the number of ways in
which n− 1 pairs of parentheses can appear in a grammatically correct sentence. This is the
(n− 1)th Catalan number ; in combinatorics it is known that

cn−1 =
(2n− 2)!

n!(n− 1)!
.

So the degree of the Grassmannian G(2, n+1) ⊆ P(
∧2 kn+1) is

(2n− 2)!

n!(n− 1)!
, which is also the

number of lines in Pn that meet 2n− 2 general n− 2-planes in Pn.
Note that σ1 is the class of the hyperplane section of any Grassmannian under the Plücker

embedding. With the aid of the hook formula from combinatorics, we can work out

deg(G(k, n)) = (k(n− k))!
k−1∏
i=0

i!

(n− k + i)!
.

13
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Now on to Chern classes. Recall the Chern classes of a vector bundle can be computed
as the degeneracy loci of the global sections (that is, Chern classes measure the extent to
which a vector bundle is nontrivial, with a trivial vector bundle just being the product of a
manifold with a vector space). But there are other ways of building the Chern classes when
the bundle is built from simpler bundles.

Example: 27 lines on a cubic surface. Given a smooth cubic surface X ⊆ P3 determined
by the vanishing of a cubic form F in four variables, we wish to determine the degree of
the locus in PGr(1, 3) = Gr(2, 4) of lines contained in X. We linearize the problem using
the observation that, if we fix a particular line L ⊆ P3, then the condition that L lies on
X can be expressed as four linear conditions on the coefficients of F : to see this, note
that the restriction map from the 20-dimensional vector space of cubic forms in P3 to the
four-dimensional vector space VL = H0(OL(3)) of cubic forms on a line L ∼= P1 ⊆ P3 (four
dimensions are x3, x2y, xy2, and y3) is a linear surjection, and the condition for the inclusion
L ⊆ X is that F maps to 0 in VL.

As the line L varies over Gr(2, 4), the four-dimensional spaces VL of cubic forms on the
varying lines L fit together to form a vector bundle V of rank 4 on Gr(2, 4). A cubic form
F on P3, through its restriction to each VL, defines an algebraic global section σF of this
vector bundle. Thus the locus of lines contained in the cubic surface X is the zero locus of
the section σF . Assuming for the moment that this zero locus is zero-dimensional, we call
its class in A(Gr(2, 4)) the fourth Chern class of V , denoted c4(V).

We can build V by first examining the rank-2 vector bundle S∗ on Gr(2, 4) by S∗
L =

H0(OL(1)) consisting of linear functions on L. Then the Chern class of S∗
L reflects the

number of lines on planes instead of cubic surfaces. Given a linear form H on P3 one obtains
a section σH of S∗

L by σH(L) = HL. The zero locus of σH is simply the Schubert cycle

Σ1,1(H) =

(
∗ ∗ 0 0
∗ ∗ ∗ 0

)
, lines that are contained in the plane H. Thus c2(S∗) = σ1,1.

Similarly, given two linear forms H1 and H2 on P3, then σH1 and σH2 are linearly dependent
if and only if L ∩ (H1 ∩ H2) ̸= ∅. So c1(S∗) = σ1, the class of lines touching a given line.
Our remaining task is to relate c(V) and c(S∗) using V = Sym3S∗.

We must first see that we can build S∗ as the direct product of two line bundles, S∗ =
L ⊕M . Then write c1(L) = α and c1(M) = β, so c(L) = 1 + α and c(M) = 1 + β. Then
c(S∗) = (1 + α)(1 + β), meaning c1(S∗) = α + β and c2(S∗) = αβ. Note that

Sym2S∗ = L2 ⊕ L⊗M ⊕M2

and so

c(Sym2S∗) = (1+ 2α)(1+α+ β)(1+ 2β) = 1+ 3(α+ β) + (2α2 +2β2 +8αβ) + 4αβ(α+ β),

which we can express in terms of c1(S∗) and c2(S∗) as

1 + 3c1(S∗) + (2c21(S∗) + 4c2(S∗)) + 4c2(S∗)c1(S∗).

This formula holds for any rank 2 vector bundle. So in particular, we see c1(Sym
2S∗) =

3c1(S∗), c2(Sym
2S∗) = 2c21(S∗) + 4c2(S∗), and c3(Sym

2S∗) = 4c2(S∗)c1(S∗). Moreover,

Sym3(S∗) = L3 ⊕ L2 ⊗M ⊕ L⊗M2 ⊕M3

14
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yields

c4(Sym
3S∗) = [(1 + 3α)(1 + 2α + β)(1 + α + 2β)(1 + 3β)]deg 4

= 3α(2α + β)(α + 2β)3β = 9c2(S∗)(2c21(S∗) + c2(S∗)).

Recalling that in our example c1(S∗) = σ1 and c2(S∗) = σ1,1, we have

c4(Sym
3S∗) = 9σ1,1(2σ

2
1 + σ1,1) = 9σ1,1(2σ2 + 3σ1,1) = 27.

So we get that there are 27 lines on a cubic surface.

Another Chern class example. Consider the bundle E over Gr(3, 4) = PGr(2, 3) of
plane conics in a plane in P3. That is, the fibers of the projective bundle PEH ∼= P5 are the
space of the conics in H. Then E is a rank 6 vector bundle over PGr(2, 3) = P3∗. Note that
PE = PSym2(S∗), the bundle of lines in a plane of P3. We can apply the Theorem that says

A(PE) = A(X)[ζ]/(ζr + c1(E)ζr−1 + · · · cr−1(E)ζ + cr(E)),

but first we will need to find the total Chern class c(E). We will use A(X) = A(P3∗) =
Z[ω]/(ω4), where ω is the class of a plane in P3∗ and so corresponds to the cycle of planes in
P3 containing a given point.

Since S∗ is a rank 3 vector bundle, we can write S∗ = L⊕M ⊕N , so

c(S∗) = 1 + ω + ω2 + ω3 = (1 + α)(1 + β)(1 + γ).

Then Sym2S∗ = L2 ⊕ L⊗M ⊕ L⊗N ⊕M2 ⊕M ⊗N ⊕N2, so

c(Sym2S∗) = (1 + 2α)(1 + α + β)(1 + α + γ)(1 + 2β)(1 + β + γ)(1 + 2γ).

We want to put this in terms of ω. Our initial equality 1+ω+ω2+ω3 = (1+α)(1+β)(1+γ)
gives us

• ω = α + β + γ

– ω2 = α2 + 2αβ + 2αγ + β2 + 2βγ + γ2

– ω3 = α3 + 3α2β + 3α2γ + 3αβ2 + 6αβγ + 3αγ2 + β3 + 3β2γ + 3βγ2 + γ3

• ω2 = αβ + αγ + βγ

– ω3 = (αβ + αγ + βγ)(α + β + γ) = α2β + α2γ + αβ2 + 3αβγ + αγ2 + β2γ + βγ2

• ω3 = αβγ

The degree ≤ 3 terms of (1 + 2α)(1 + α + β)(1 + α + γ)(1 + 2β)(1 + β + γ)(1 + 2γ) are

1 + 4α + 4β + 4γ + 5α2 + 15αβ + 15αγ + 5β2 + 15βγ + 5γ2

+2α3 + 17α2β + 17α2γ + 17αβ2 + 52αβγ + 17αγ2 + 2β3 + 17β2γ + 17βγ2 + 2γ3.
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The degree 1 component is 4(α + β + γ) = 4ω. Note that our equations give (α2 + 2αβ +
2αγ + β2 + 2βγ + γ2)− (αβ + αγ + βγ) = α2 + αβ + αγ + β2 + βγ + γ2 = 0. The degree 2
component is thus

5α2 + 15αβ + 15αγ + 5β2 + 15βγ + 5γ2

= 5α2 + 15αβ + 15αγ + 5β2 + 15βγ + 5γ2 − 5(α2 + αβ + αγ + β2 + βγ + γ2)

= 10(αβ + αγ + βγ) = 10ω2.

Our equations also give us that

A := α3 + 2α2β + 2α2γ + 2αβ2 + 3αβγ + 2αγ2 + β3 + 2β2γ + 2βγ2 + γ3 = 0

and
B := α2β + α2γ + αβ2 + 2αβγ + αγ2 + β2γ + βγ2 = 0.

So our degree 3 component is

2α3 + 17α2β + 17α2γ + 17αβ2 + 52αβγ + 17αγ2 + 2β3 + 17β2γ + 17βγ2 + 2γ3 − 2A

= 13α2β + 13α2γ + 13αβ2 + 46αβγ + 13αγ2 + 13β2γ + 13βγ2 − 13B = 20αβγ = 20ω3.

Therefore we have

c(Sym2S∗) = (1 + 2α)(1 + α + β)(1 + α + γ)(1 + 2β)(1 + β + γ)(1 + 2γ)

= 1 + 4ω + 10ω2 + 20ω3.

You can also do this whole calculation using e.g. Macaulay2 by inputting the ring

Z[α, β, γ]/((α + β + γ)2 − (αβ + αγ + βγ), (α + β + γ)3 − αβγ)

and simplifying the polynomial c(Sym2S∗).
Therefore we have

A(E) = Z[ω, ζ]/(ω4, ζ6 + 4ωζ5 + 10ω2ζ4 + 20ω3ζ3)

where ζ represents the class that restricts to a hyperplane P4 on each fiber ω3 (note that a
general P4 of conics is basepoint-free, so ζ does not restrict to the class of conics containing
a given point). That is to say, ω3ζ is a P4 of conics in the plane represented by ω3, while ω3

is itself the fiber class: a full P5 of conics in the given plane.
Now consider the class δ of conics intersecting a line in P3. We want to determine deg(δ8).
First use undetermined coefficients to find δ = pω + qζ ∈ A1(E) the class of all plane

conics through a given line L and find deg(δ8). To this effect, find the degree of δ in each
component: that is, what is deg(δω2ζ5) and deg(δω3ζ4)? Note ω2ζ5 is a line in the P3∗ (so it
represents a pencil of planes with a “fixed” conic) and ω3ζ4 is a line in the P5 (so it represents
a pencil of conics in a fixed plane).

I calculated that deg(δω3ζ4) = 1 because a general pencil of conics will have one fibre
containing a general point (the general point where is the intersection of the general line L
with the fixed plane).
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I then calculated that deg(δω2ζ5) = 2 because the intersection of L with a general pencil
of planes will trace out a line in a plane containing the fixed conic C, which will intersect C
at two points.

From this we see that δ = 2ω + ζ. Now we can calculate

δ8 = (ζ + 2ω)8 = ζ8 + 16ζ7ω + 112ζ6ω2 + 448ζ5ω3.

We know that ω3ζ5 = 1, since it is the class of a unique conic. Using

ζ6 + 4ωζ5 + 10ω2ζ4 + 20ω3ζ3 = ω4 = 0,

we can see that

ω2(ζ6 + 4ωζ5 + 10ω2ζ4 + 20ω3ζ3) = ω2ζ6 + 4ω3ζ5 = 0,

so deg(ω2ζ6) = −4. Similarly,

ωζ(ζ6 + 4ωζ5 + 10ω2ζ4 + 20ω3ζ3) = ωζ7 + 4ω2ζ6 + 10ω3ζ5 = 0,

so ωζ7 − 16 + 10 = 0, thus ωζ7 = 6. Finally,

ζ2(ζ6 + 4ωζ5 + 10ω2ζ4 + 20ω3ζ3) = ζ8 + 4ωζ7 + 10ω2ζ6 + 20ω3ζ5 = 0,

so ζ8 + 4(6) + 10(−4) + 20(1) = 0, giving ζ8 = −4. Putting this all together, we get

δ8 = −4 + 16(6) + 112(−4) + 448(1) = 92.

Therefore there are 92 plane conics in P3 intersecting 8 given general lines.
It is also worth mentioning that δ5ω3 = 1, meaning that there is a unique plane conic

contained in a given plane and meets five lines in P3: specifically, the unique conic that
meets the five points of intersection of the five lines with the plane. The computation works
out: δ5ω3 = (2ω + ζ)5ω3 = (ζ5 + 10ζ4ω + 40ζ3ω2 + 80ζ2ω3 + 80ζω4 + 32ω5)ω3 = ζ5ω3 = 1.

A similar calculation reveals δ7ω = 34, so there are 34 plane conics through 7 given lines
and are coplanar with a given point. Similarly, δ6ω2 = 8, so there are 8 plane conics inter-
secting 6 given lines and are coplanar with 2 given points (equivalently(?), conics intersecting
6 given lines and intersect a seventh given line twice).

Lines on a Quintic Threefold
Let E be a rank 6 vector bundle on Gr(2, 5) associating to each L ∈ Gr(2, 5) the 6-

dimensional vector space H0(OL(5)) = ⟨x5, x4y, x3y2, x2y3, xy4, y5⟩. Let Q be a quintic
threefold in P4. Then Q gives a section on E by σQ(L) = L∩Q for each L ∈ Gr(2, 5). Then
the locus on lines contained in Q is the zero locus of σQ, which is c6(E).

Let S be a rank 2 vector bundle on Gr(2, 5) giving a point to each line. Then E = Sym5S.
We can write S = L ⊕M and so c(S) = (1 + α)(1 + β) where α = c1(L) and β = c1(M).
Then c(S) = 1 + α + β + αβ, and so c1(S) = α + β and c2(S) = αβ.

Furthermore, we can write c2(S) in terms of Schubert classes on Gr(2, 5). Given a linear
form H ⊆ P4, one obtains a section σH of S by σH(L) = H ∩ L. The zero locus of σH is
lines contained in H, which is the Schubert class σ1,1.

17



Jake Kettinger Schubert & Chern 30 July 2023

Similarly, c1(S) can be calculated by taking two linear forms H1 and H2. Then σH1 and
σH2 are linearly dependent if L ∩ (H1 ∩ H2) ̸= ∅. So c1(S) is the class of lines touching a
given plane, which is σ1,0. Thus α + β = σ1 and αβ = σ1,1.

Note

E = Sym5S = L5 ⊕ L4 ⊗M ⊕ L3 ⊗M2 ⊕ L2 ⊗M3 ⊕ L⊗M4 ⊕M5

and so
c6(E) = (5α)(4α + β)(3α + 2β)(2α + 3β)(α + 4β)(5β)

which can be rewritten as

25αβ · (4α + β)(α + 4β) · (3α + 2β)(2α + 3β).

This is equal to

25αβ · [4(α2 + 2αβ + β2) + 9αβ] · [6(α2 + 2αβ + β2) + αβ]

which can be written into Schubert classes as

25σ1,1[4σ
2
1 + 9σ1,1][6σ

2
1 + σ1,1] = 25σ1,1[4σ2 + 13σ1,1][6σ2 + 7σ1,1]

= 25σ1,1[24σ
2
2 + 106σ2σ1,1 + 91σ2

1,1] = 600σ1,1σ
2
2 + 2650σ2

1,1σ2 + 2275σ3
1,1 = 600 + 2275 = 2875.

Thus there are 2875 lines contained in a general quintic threefold in P4. Recall that σ1 is the
class of lines touching a given plane, σ1,1 is the class of lines contained in a given hyperplane
and σ2 is the class of lines touching a given line. Thus σ3

1,1 is the class of lines contained
in three given hyperplanes, but the intersection of three general hyperplanes is a line, so
σ3
1,1 is a unique line. Similarly, σ1,1σ

2
2 is the class of lines contained in a hyperplane H and

touching two given lines L1, L2 ∈ P4. Thus the line must touch the points p1 = H ∩ L1 and
p2 = H∩L2, so σ1,1σ

2
2 is the class of lines containing two given points, and so is also a unique

line. By contrast, σ2
1,1σ2 is the class of lines contained in a plane in P4 and touching a line

in P4: but in general lines and planes are skew in P4, so this class is 0.

Now on to Shapiro-Shapiro and the hook formula. The hook formula measures
the amount of young tableux or something....

The Shapiro-Shapiro conjecture deals with real solutions to enumeration puzzles. For
example, recall the 2× 2 minors of the matrix(

a b c d
e f g h

)
yield a Plücker embedding into Gr(2, 4) for the line in P3 that contains the points (a, b, c, d)
and (e, f, g, h). The determinant of the matrix

a b c d
e f g h
1 t t2 t3

0 1 2t 3t2


18
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for some parameter t can be expressed as a polynomial with variable t and whose coefficients
are the variables of the Plücker embedding. This determinant is

ch+ aht2 − 2bht− bet4 + 2cet3 − det2 + aft4 − 3cft2 + 2dft− dg − 2agt3 + 3bgt2

= (ch− dg)− 2(bh− df)t+ (ah− de)t2 + 3(bg − cf)t2 − 2(ag − ce)t3 − (af − be)t4

= P2,3 − 2P1,3t+ (P0,3 + 3P1,2)t
2 − 2P0,2t

3 − P0,1t
4.

The Shapiro-Shapiro conjecture says that as long as the lines in P3 are real, then this poly-
nomial will have all real roots.

No no no, it’s different. Let AF −BE + CD be the Plücker embedding. Then write
A
B
C
D
E
F

 =


c1 d1
c2 d2
c3 d3
c4 d4
c5 d5
c6 d6


(
s
t

)
.

This parametrizes a line in P5, which will meet Gr(2, 4) in two points, which in P3 correspond
to two (skew) lines. Now consider the 4× 2 matrix

1 0
t 1
t2 2t
t3 3t2


and put all 2× 2 minors into a column matrix

1
2t
3t2

t2

2t3

t4

 .

Then for four different values α, β, γ, δ of t, build a 6× 4 matrix

M =


1 1 1 1
2α 2β 2γ 2δ
3α2 3β2 3γ2 3δ2

α2 β2 γ2 δ2

2α3 2β3 2γ3 2δ3

α4 β4 γ4 δ4


The nullspace of M is two-dimensional since α, β, γ, δ are general. Choose a basis for the
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nullspace {v⃗, u⃗}. Then the parametrized line
A
B
C
D
E
F

 =
(
v⃗ u⃗

)(s
t

)

meets Gr(2, 4) at all real points.
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