The canonical divisor K of \mathbb{P}^2 can be computed as $\operatorname{div}(\operatorname{d} f \wedge \operatorname{d} g)$, where f and g are rational functions on \mathbb{P}^2 in variables X, Y, and Z. Let $f = x := \frac{X}{Z}$ and let $g = y := \frac{Y}{Z}$, and $\omega = \operatorname{d} x \wedge \operatorname{d} y$.

First we must compute

$$-\mathrm{ord}_P\left(\frac{\mathrm{d}f_P\wedge\mathrm{d}g_P}{\mathrm{d}x\wedge\mathrm{d}y}\right),$$

where f_P and g_P generate \mathfrak{m}_P (that is, f_P and g_P are linearly independent and $\operatorname{ord}_P(f_P) = \operatorname{ord}_P(g_P) = 1$). Then

$$\operatorname{div}(\omega) = \sum_{P \in \mathbb{P}^2} -\operatorname{ord}_P\left(\frac{\mathrm{d}f_P \wedge \mathrm{d}g_P}{\mathrm{d}x \wedge \mathrm{d}y}\right).$$

First let P = (a, b, c) with $c \neq 0$. Then we can take $f_P = cx - a$ and $g_P = cy - b$. Then

$$-\operatorname{ord}_P\left(\frac{\mathsf{d}(cx-a)\wedge\mathsf{d}(cy-b)}{\mathsf{d}x\wedge\mathsf{d}y}\right) = -\operatorname{ord}_P\left(\frac{c\mathsf{d}x\wedge c\mathsf{d}y}{\mathsf{d}x\wedge\mathsf{d}y}\right) = -\operatorname{ord}_P(c^2) = 0.$$

Now let Q = (a, b, 0) be on the line Z = 0, with $a \neq 0$. Then we can take $f_Q = \frac{y}{x} - \frac{b}{a}$ and $g_P = \frac{1}{x} = \frac{Z}{X}$. (Note: we cannot take f_Q or g_Q to be bx - ay, because $\operatorname{ord}_Q(bx - ay) = 0$, not 1. Recall $bx - ay = \frac{bX - aY}{Z}$. Instead we have $f_Q = \frac{aY - bX}{aX}$.) Then

$$-\operatorname{ord}_{Q}\left(\frac{\mathsf{d}\left(\frac{y}{x}-\frac{b}{a}\right)\wedge\mathsf{d}\left(\frac{1}{x}\right)}{\mathsf{d}x\wedge\mathsf{d}y}\right) = -\operatorname{ord}_{Q}\left(\frac{\mathsf{d}\left(\frac{y}{x}\right)\wedge\mathsf{d}\left(\frac{1}{x}\right)}{\mathsf{d}x\wedge\mathsf{d}y}\right)$$
$$= -\operatorname{ord}_{Q}\left(\frac{(x^{-1}\mathsf{d}y-x^{-2}y\mathsf{d}x)\wedge-x^{-2}\mathsf{d}x}{\mathsf{d}x\wedge\mathsf{d}y}\right) = -\operatorname{ord}_{Q}\left(\frac{x^{-1}\mathsf{d}y\wedge x^{-2}\mathsf{d}x}{\mathsf{d}x\wedge\mathsf{d}y}\right) = -\operatorname{ord}_{Q}(-x^{-3})$$
$$= \operatorname{ord}_{Q}(x^{3}) = \operatorname{ord}_{Q}\left(\frac{X^{3}}{Z^{3}}\right) = -3.$$

Finally, let R be the point (0, 1, 0). Then we can take $f_R = \frac{1}{y}$ and $g_R = \frac{x}{y}$. In the same kind of computation as for Q, we find

$$-\mathrm{ord}_R\left(\frac{\mathsf{d}f_R\wedge\mathsf{d}g_R}{\mathsf{d}x\wedge\mathsf{d}y}\right)=-3.$$

Then we see that for $P \in \mathbb{P}^2$, we have

$$-\operatorname{ord}_{P}(\omega) = \begin{cases} 0 & P \notin V(Z) \\ -3 & P \in V(Z) \end{cases}.$$

Therefore $K = \operatorname{div}(\omega) = -3L$, where L is the line V(Z).