Now consider the projective plane \mathbb{P}_k^2 blown up at the point (p_0, p_1, p_2) , and call this surface \mathbb{B} . By projective duality, let $(\ell_0, \ell_1, \ell_2) \in (\mathbb{P}^2)^* \cong \mathbb{P}^2$ be a line in \mathbb{P}^2 .

Then

$$\mathbb{B} = \{ (x_0, x_1, x_2), (\ell_0, \ell_1, \ell_2) \in \mathbb{P}^2 \times (\mathbb{P}^2)^* : p_0\ell_0 + p_1\ell_1 + p_2\ell_2 = 0, x_0\ell_0 + x_1\ell_1 + x_2\ell_2 = 0 \}.$$

Then $\mathbb{B} \subseteq \mathbb{P}^2 \times \mathbb{P}^2 \hookrightarrow \mathbb{P}^8$ under the Segre embedding

$$((x_0, x_1, x_2), (\ell_0, \ell_1, \ell_2)) \mapsto (x_0\ell_0, x_0\ell_1, x_0\ell_2, x_1\ell_0, x_1\ell_1, x_1\ell_2, x_2\ell_0, x_2\ell_1, x_2\ell_2).$$

Let us blow up \mathbb{P}^2 at the point $(p_0, p_1, p_2) = (0, 0, 1)$. Then we look at lines of the form $0\ell_0 + 0\ell_1 + 1\ell_2 = 0$ and so $\ell_2 = 0$.

Thus we can embed \mathbb{B} into \mathbb{P}^5 , with elements of the form

$$(x_0\ell_0, x_0\ell_1, x_1\ell_0, x_1\ell_1, x_2\ell_0, x_2\ell_1) = (w_0, w_1, w_2, w_3, w_4, w_5).$$

The w_i 's satisfy the relation $w_0w_5 = w_1w_4$ and $w_2w_5 = w_3w_4$. This implies that $w_0w_3w_4w_5 = w_1w_2w_4w_5$ and since the coordinate ring of the image of $\mathbb{P}^2 \times \mathbb{P}^2$ in \mathbb{P}^5 is an integral domain (since the image is an irreducible algebraic variety) we can apply cancellation and conclude $w_0w_3 = w_1w_2$ as well. Therefore $w_0w_3 - w_1w_2 \in (w_0w_5 - w_1w_4, w_2w_5 - w_3w_4)$. Thus the coordinate ring of the image of $\mathbb{P}^2 \times \mathbb{P}^2$ in \mathbb{P}^5 is

$$k[W_0, W_1, W_2, W_3, W_4, W_5]/(W_0W_5 - W_1W_4, W_2W_5 - W_3W_4).$$

Recall that our x_i 's and ℓ_i 's must satisfy the relation $x_0\ell_0 + x_1\ell_1 = 0$ in \mathbb{B} , and therefore our w_i 's must satisfy the relation $w_0 + w_3 = 0$. Therefore the coordinate ring of our blowup \mathbb{B} is

$$k[W_0, W_1, W_2, W_3, W_4, W_5]/(W_0W_5 - W_1W_4, W_2W_5 - W_3W_4, W_0 + W_3).$$

This implies $W_0 = -W_3$ in the quotient and so this is isomorphic to

$$k[W_1, W_2, W_3, W_4, W_5]/(W_3W_5 + W_1W_4, W_2W_5 - W_3W_4).$$

Relabeling the letters gives us the coordinate ring for \mathbb{B} :

$$k[x, y, z, t, u]/(zu + xt, yu - zt).$$

Also the coordinate ring of \mathbb{P}^3 blown up at the point (0, 0, 0, 1) is

$$k[x_1, \dots, x_{11}]/(x_1x_5 - x_2x_4, x_1x_6 + x_4x_7 + x_7x_8, x_1x_8 - x_2x_7, x_1x_9 + x_4x_{10} + x_8x_{10}, x_2x_3 + x_4x_5 + x_5x_8, x_2x_9 + x_4x_{11} + x_8x_{11}).$$

Here

$$\mathbb{B}(\mathbb{P}^3, (p_0, p_1, p_2, p_3)) = \left\{ ((x_0, x_1, x_2, x_3), (\ell_0, \ell_1, \ell_2, \ell_3)) \in \mathbb{P}^3 \times (\mathbb{P}^3)^* : \sum p_i \ell_i = 0 = \sum x_i \ell_i \right\}.$$

In other words, $P = (p_0, p_1, p_2, p_3)$ is "replaced" with the set of lines that go through P, which forms a projective plane \mathbb{P}^2 where P once was. The rest of the space is left alone.

Also the projective plane \mathbb{P}^2 blown up at two points (p_0, p_1, p_2) and (q_0, q_1, q_2) is

 $\left\{ ((x_0, x_1, x_2), (\ell_0, \ell_1, \ell_2), (h_0, h_1, h_2)) \in \mathbb{P}^2 \times (\mathbb{P}^2)^* \times (\mathbb{P}^2)^* : \sum \ell_i p_i = \sum h_i q_i = \sum x_i \ell_i = \sum x_i \ell_i = 0 \right\}.$

When we take $(p_0, p_1, p_2) = (0, 0, 1)$ and $(q_0, q_1, q_2) = (0, 1, 0)$, we have a Segre embedding into \mathbb{P}^{11} and after modding out by the necessary relations we get the coordinate ring

 $k[x_0, x_1, \dots, x_7]/(x_0x_1 + x_2x_5, x_0x_1 + x_3x_4, x_0x_2 + x_1x_7, x_0x_2 + x_3x_6).$