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Let us have S = Z(x2+y2+z2−w2) ⊆ P3
C as our quadric surface. Let N = (0, 0, 1, 1) ∈ S

and let F = Z(z). Note that L1 = Z(x− iy, z −w), L2 = Z(ix− y, z −w) ⊆ S are rulings at
N .

Let us define a map π : S → F given by projection from N . Let (a, b, c, d) ∈ S \ {N}.
Then the line connecting N and (a, b, c, d) can be parametrized by (t, u) ∈ P1 as

(ta, tb, (u− t) + tc, (u− t) + td).

This line intersects F when (u − t) + tc = 0, and so u − (1 − c)t = 0, and so (t, u) =
(1, 1− c). Thus the line intersects F at (a, b, 0, d− c). Thus π(a, b, c, d) = (a, b, 0, d− c) for
all (a, b, c, d) 6= N .

We run into a problem with this definition at N . We would have π(N) = (0, 0, 0, 1−1) =
(0, 0, 0, 0) which is not defined. To remedy this, we will need to blow up the quadric at N .
By blowing up P3 at N , we are essentially replacing N with the set of all lines that contain
N . This set of lines forms a plane. When we blow up S at N , we are only interested in such
lines that are contained in TN(S) = Z(z−w), the tangent plane of S at N . This set of lines
forms a line, which we may parametrize with (t, u) ∈ P1. For example, we will denote the
line Z(ux − ty, z − w) as (t, u). Note that the rulings L1 and L2 may be denoted (i, 1) and
(1, i), respectively.

Now that we have blown up S at N , our resulting surface will be denoted S̃. It is not
sufficient to speak of N , in S̃, but rather (N, (t, u)). Note that TN(S) ∩ F = Z(z, w) =
{(a, b, 0, 0)}. The line that connects N with (a, b, 0, 0) is Z(bx− ay, z−w), which we denote
as (a, b). Thus when we develop a new map to extend π later, we can send (N, (t, u)) to
(t, u, 0, 0).

Let us return to the rulings L1 and L2. We can parametrize L1 as (is, s, r, r) for some
(s, r) ∈ P1. Note that for s 6= 0, π(is, s, r, r) = (is, s, 0, 0) = (i, 1, 0, 0). Therefore π(L1) =
(i, 1, 0, 0). Similarly, we have π(L2) = (1, i, 0, 0). This is not injective. To remedy this, we
will need to blow up F at the two points P1 = (i, 1, 0, 0) and P2 = (1, i, 0, 0). Blowing up F
at P1 and P2 replaces each point with the set of lines that contain it. Thus in the blowup
F̃ , we must write (P1, (t, u)) instead of P1 and (P2, (t, u)) instead of P2, where (t, u) ∈ P1.

The (t, u) in (P1, (t, u)) will stand for the point (t, 0, 0, u) on the x-axis Z(y, z) that lays
on the line through P1. Likewise for (P2, (t, u)).

Then in the extension of π, we can send (is, s, r, r) to (P1, (r, s)) and send (s, is, r, r)

to (P2, (r, s)). Note that when s = 0, (is, s, r, r) = (s, is, r, r) = N in S. In S̃, we have
(is, s, r, r) = (N, (i, 1)) and (s, is, r, r) = (N, (1, i)) when s = 0. These points get sent
to (P1, (1, 0)) and (P2, (1, 0)) respectively. The reason for this apparent backwards-ness is
explained in the blue paragraph below.

Finally, we can formally describe the extension of π,

π̃ : S̃ → F̃
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satisfying

(N, (i, 1)) 7→ (P1, (0, 1)) (P1, (1, 0))

(N, (1, i)) 7→ (P2, (0, 1)) (P2, (1, 0))

(N, (t, u)) 7→ (t, u, 0, 0), (i, 1) 6= (t, u) 6= (1, i)

(is, s, r, r) 7→ (P1, (s, r)) (P1, (r, s)), (s, r) 6= (0, 1)

(s, is, r, r) 7→ (P2, (s, r))(P2, (r, s)), (s, r) 6= (0, 1)

(a, b, c, d) 7→ (a, b, 0, d− c), else.

We flip the r and s because the points (P1, (1, 0)) and (P2, (1, 0)) are collinear and the line
connecting them is Z(z, w), which is the image of {(N, (t, u))}. That is, Z(z, w) is the image

of the exceptional line of S̃, and we represent this line with the pair (1, 0) ∈ P1. This
naming convention comes from the fact that Z(z, w) intersects the x-axis Z(y, z) at the point
(1, 0, 0, 0). We then extend this necessity of the image of N -line to the images of the lines
L1 and L2.

We claim that π̃ is an isomorphism. We wish to show that blowing down the line in
F̃ that connects (P1, (1, 0)) and (P2, (1, 0)) (which is the lift of the line Z(w) that connects

P1 and P2 in F ), creates a surface which is isomorphic to S̃ blown down at the exceptional

line Ñ := {(N, (t, u))}. We then wish to understand the blow-down of F̃ as a P1 × P1 and
understand the graph of the real part of S as a subset of P1 × P1.

Not sure why exactly π̃ is an isomorphism. TBD.
We know that Z(w) is the image of the exceptional line at N in S̃, and so (given that π̃

is indeed an isomorphism) blowing down the exceptional line in S̃ and blowing down Z(w)
should maintain isomorphism.

Let F̂ be the blowdown of F̃ at Z(w). We claim that F̂ ∼= P1 × P1. Let (a, b, 0, d) ∈
F̃ \ Z(w). Then we can represent (a, b, 0, d) with a line through P1 and a line through P2.
Let us begin with the case that (a, b, 0, d) is on neither the exceptional lines at P1 or P2.
Then in F , we can represent the line connecting P1 and (a, b, 0, d) with a point along the
x-axis collinear with (a, b, 0, d) and P1. The line connecting P1 = (i, 1, 0, 0) and (a, b, 0, d) is
given by the polynomial

det

x y w
a b d
i 1 0

 = x(−d)− y(−di) + w(a− ib).

This line intersects the x-axis Z(y, z) at (a − ib, 0, 0, d). Thus we can represent the line
connecting P1 and (a, b, 0, d) with the pair (a− ib, d) ∈ P1.

Similarly, we can represent the line connecting P2 and (a, b, 0, d) with the pair (a+ib, d) ∈
P1. Thus we can represent (a, b, 0, d) in F̂ as ((a− ib, d), (a+ ib, d)).

Now let us pick a point (P1, (t, u)) on the exceptional line at P1. Then we know that
(P1, (t, u)) blows down to P1 in F , whose connecting-line to P2 is Z(w), which intersects the x-
axis at (1, 0). Thus we can represent (P1, (t, u)) as ((t, u), (1, 0)). Similarly, we can represent
(P2, (t, u)) as ((1, 0), (t, u)). Thus we represent the entire line Z(w) connecting (P1, (1, 0)) and
(P2, (1, 0)) as ((1, 0), (1, 0)). This is good, because we are blowing down this line. Note that
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Ñ 7→ Z(w) 7→ ((1, 0), (1, 0)), and so in our map π̂ : S → F̂ , we know π̂(N) = ((1, 0), (1, 0)).
Also for s 6= 0, π̂(is, s, r, r) = ((r, s), (1, 0)) and π̂(s, is, r, r) = ((1, 0), (r, s)). For all other
points, π̂(a, b, c, d) = ((a− bi, d− c), (a+ ib, d− c)).

Now for a real point (a, b, c, d) ∈ S (where a, b, c, d are all real), we can see the image
π̂(R(S)) = {((a− ib, d− c), (a+ ib, d− c)) : a, b, c, d ∈ R} ∪ {((1, 0), (1, 0))}.

Also note that the total transform of the line L through P1 and P2 on F is L̃+E1 +E2.
Thus

1 = L2 = (L̃+E1+E2)
2 = L̃2+2L̃E1+2L̃E2+2E1E2+E2

1 +E2
2 = L̃2+2+2−1−1 = L̃+2.

Thus L̃2 = −1.

Now we will look at this through a more algebraic perspective. We will show that P1×P1

minus two lines is isomorphic to P2 minus one line by looking at the induced maps on their
respective coordinate rings.

Note that P1 × P1 ∼= Q = V(u0u3 − u1u2) ⊆ P3. We can define a map

P1 × P1 −→ Q

given by
((a : b), (c : d)) 7−→ (ac : ad : bc : bd)

and an inverse map
Q −→ P1 × P1

given by
(u0 : u1 : u2 : u3) 7−→ ((u0 + u1 : u2 + u3), (u0 + u2 : u1 + u3)).

Let U = P2 \ V(z) = D+(z). Then OP2(U) = k [x, y, z, z−1]. We can choose (1 : 0 : 0)
and (0 : 1 : 0) ∈ V(z) as our two blowup points. Then any point on U can be uniquely
determined by the slopes of the lines connecting it with the two points at infinity (the point’s
width and height). Then we can define a birational map

P2 99K P1 × P1 −→ Q

given by
(a : b : c) 7−→ ((a : c), (b : c)) 7−→ (ab : ac : bc : c2).

Then we can find an open subset V ⊆ Q and a map

OQ(V ) = k[u0, u1, u2, u3]/(u0u3 − u1u2)V −→ k[x, y, z, z−1]

satisfying

u0 7−→ xy,

u1 7−→ xz,

u2 7−→ yz,

u3 7−→ z2.
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Thus V = Q \V(u3) so that we can invert u3. Note that Q∩V(u3) = V(u1, u3)∪V(u2, u3),
a union of two lines! Thus

OQ(V ) = k[u0, u1, u2, u3, u
−1
3 ]/(u0u3 − u1u2) ∼= k[u1, u2, u3, u

−1
3 ]

which is isomorphic to k[x, y, z, z−1] = OP2(D+(z)). Note that the map given above is injec-
tive but not surjective; but its image is k[xz, yz, z2, z−2], which is isomorphic to k[x, y, z, z−1]!!

Thus the quadric minus two lines (Q ∩ V (u3) = V(u1, u3) ∪V(u2, u3)) is isomorphic to
P2 minus one line (V(z)). Thus the quadric is rational.
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