The following is notes on Dolgachev's paper on the Chilean configuration of points. In chapter 6, they discuss the blowup Y of \mathbb{P}^2 at eight of the nine points of the Chilean configuration P_1, \ldots, P_8 and the map $|-2K_Y|: Y \to \mathbb{P}^3$ given by $p \mapsto (f(p)^2, f(p)g(p), g(p)^2, \varphi(p))$ (the generators of $|-2K_Y|$) where f and g are generators of $|-K_Y|$. We know there are four generators of $|-2K_Y|$ because $\binom{6+2}{2} - 8\binom{2+1}{2} = 4$.

Let P_9 be the ninth point of the Chilean configuration and let $Q \in \mathbb{P}^2$ be such that P_1, \ldots, P_8, Q are in Cayley-Bacharach position. The antibicanonical map (henceforth denoted β) induces the double plane model of Y. The image of β is a cone $V(xz-y^2)$ with a singularity at (0,0,0,1). We will show that this map is degree 2, and that $\beta(p) = \beta(q)$ if and only if $p = -q \mod Q$ (in other words, p and q map to each other under the Bertini involution).

First we will show that if $\beta(p) = \beta(q)$, p and q are on the same fiber. Given $\beta(p) = \beta(q)$, we have $(f(p)^2, f(p)g(p), g(p)^2, \varphi(p)) = (f(q)^2, f(q)g(q), g(q)^2, \varphi(q)) \in \mathbb{P}^3$, or

$$\operatorname{rank} \begin{pmatrix} f(p)^2 & f(p)g(p) & g(p)^2 & \varphi(p) \\ f(q)^2 & f(q)g(q) & g(q)^2 & \varphi(q) \end{pmatrix} = 1.$$

We wish to show that there is a $(\lambda, \mu) \in \mathbb{P}^1$ such that $\lambda f(p) + \mu g(p) = \lambda f(q) + \mu g(q) = 0$. First suppose $\varphi(p), \varphi(q) \neq 0$. Then

$$\left(\frac{f(p)^2}{\varphi(p)}, \frac{f(p)g(p)}{\varphi(p)}, \frac{g(p)^2}{\varphi(p)}\right) = \left(\frac{f(q)^2}{\varphi(q)}, \frac{f(q)g(q)}{\varphi(q)}, \frac{g(q)^2}{\varphi(q)}\right) \in \mathbb{A}^3.$$

Now suppose p is on the (λ, μ) -fiber; in other words, $\lambda f(p) + \mu g(p) = 0$. Then

$$(\lambda f(p) + \mu g(p))^{2} = \lambda^{2} f(p)^{2} + 2\lambda \mu f(p)g(p) + \mu^{2} g(p) = 0$$

and so

$$\lambda^{2} \frac{f(p)^{2}}{\varphi(p)} + 2\lambda \mu \frac{f(p)g(p)}{\varphi(p)} + \mu^{2} \frac{g(p)^{2}}{\varphi(p)} = \lambda^{2} \frac{f(q)^{2}}{\varphi(q)} + 2\lambda \mu \frac{f(q)g(q)}{\varphi(q)} + \mu^{2} \frac{g(q)^{2}}{\varphi(q)} = 0$$

and so $(\lambda f(q) + \mu g(q))^2 = 0$ so q is on the (λ, μ) -fiber along with p.

Next suppose $\beta(p) = \beta(q)$ and $\varphi(p) = \varphi(q) = 0$. Then the same argument as above holds, just instead of dividing my $\varphi(p)$ or $\varphi(q)$ just divide by some nonzero scalar $s = f(q)^2/f(p)^2$.

Next we will show that $\beta(p) = \beta(q)$ implies $p = -q \mod Q$. That is, $p + q \sim 2Q$. First let us consider the case p, q are on the (1,0)-fiber, so f(p) = f(q) = 0. Let us analyze the regular function g^2/φ . Note that $\operatorname{div}(g^2/\varphi) = 2P_1 + \cdots + 2P_8 + 2Q - 2P_1 - \cdots - 2P_8 - A_1 - A_2 = 2Q - A_1 - A_2$ for some $A_1, A_2 \in V(f) \cap V(\varphi)$. Our goal will be to take linear combinations of g^2 and φ to get A_1 and A_2 to line up with p and q.

We know that φ and f intersect at the 18 points $2P_1, \ldots, 2P_8, A_1, A_2$. Let (a, b) be such that $ag^2(p) + b\varphi(p) = 0$ and f(p) = 0. We then want to show that $ag^2(q) + b\varphi(q) = 0$ and f(q) = 0 given that $\beta(p) = \beta(q)$. First, we show that f(q) = 0. We know that

$$\operatorname{rank} \begin{pmatrix} 0 & 0 & g(p)^2 & \varphi(p) \\ f(q)^2 & f(q)g(q) & g(q)^2 & \varphi(p) \end{pmatrix} = 1$$

so we must have f(q) = 0. Furthermore, we know that

$$\operatorname{rank} \begin{pmatrix} 0 & 0 & g(p)^2 & \varphi(p) \\ 0 & 0 & g(q)^2 & \varphi(q) \end{pmatrix} = 1$$

since $\beta(p) = \beta(q)$. Therefore $bg(p)^2 \varphi(q) = bg(q)^2 \varphi(p)$. Since $ag(p)^2 + b\varphi(p) = 0$, we know that $bg(p)^2 \varphi(q) = -ag(q)^2 g(p)^2$. Assuming $g(p) \neq 0$ (otherwise (a,b) = (1,0)) we can cancel $g(p)^2$ and thus

$$b\varphi(q) = -ag(q)^2,$$

and so $ag(q)^2 + b\varphi(q) = 0$. Therefore $\operatorname{div}_f(g^2/(ag^2 + b\varphi)) = 2Q - p - q$. Thus $2Q \sim p + q$. Other direction written now: assume that $p+q \sim 2Q$, then $\beta(p) = \beta(q)$. Since $p+q \sim 2Q$, we know that $p+q+2P_1+\cdots+2P_8 \sim 2Q+2P_1+\cdots+2P_8$ and so there is a $(\lambda,\mu) \in \mathbb{P}^1$ such that $\lambda g(p)^2 + \mu \varphi(p) = \lambda g(q)^2 + \mu \varphi(q) = 0$. Then

$$\frac{\varphi(p)}{g(p)^2} = -\frac{\lambda}{\mu} = \frac{\varphi(q)}{g(q)^2}$$

and so $\beta(p) = \beta(q) = (0, 0, -\mu, \lambda)$. The reverse direction is just the proof in reverse.

The idea is similar if $p, q \in V(\lambda f + \mu g)$, just more complicated. Maybe I'll write it down one day.

Let $\lambda f(p) + \mu g(p) = \lambda f(q) + \mu g(q) = 0$ and $\beta(p) = \beta(q)$. Now let $af(p)^2 + bf(p)g(p) + cg(p)^2 + d\varphi(p) = 0$ for some $(a, b, c, d) \in \mathbb{P}^3$. Then we want to show that $af(q)^2 + bf(q)g(q) + cg(q)^2 + d\varphi(q) = 0$. We know that

$$\operatorname{rank} \begin{pmatrix} f(p)^2 & f(p)g(p) & g(p)^2 & \varphi(p) \\ f(q)^2 & f(q)g(q) & g(q)^2 & \varphi(q) \end{pmatrix} = 1$$

and that the top row satisfies the equation $ax_0 + bx_1 + cx_2 + dx_3 = 0$. Therefore the bottom row must satisfy the same plane equation, and so

$$af(q)^{2} + bf(q)q(q) + cq(q)^{2} + d\varphi(q) = 0.$$

Thus $\operatorname{div}_{\lambda f + \mu g}(g^2/(af^2 + bfg + cg^2 + d\varphi)) = 2Q - p - q$, so $p + q \sim 2Q$.

I also have a more abstract argument than Moody's for why the image of each exceptional divisor is a curve that has a triple point.

$$e_1 \mapsto 4\ell - 3e_1 - 2e_2 - \cdots - 2e_8$$

under the Bertini involution on the blowup of four points.

We want to know how many times on the pencil $\langle f, g \rangle$ does $\tau P = \tau Q$, where P is the point in \mathbb{P}^2 that is the blowdown of e_1 and Q is the ninth base point of $|-K_Y|$. When $\tau P = \tau Q$, then $P = -P \mod Q$ and so $\beta(e_1)$ will intersect e_1 at the corresponding point.

When $\tau P = \tau Q$, then $2P \sim 2Q$ as Weil divisors on the fibre $\lambda f + \mu g$. Then

$$\underbrace{4P + 2P_2 + \dots + 2P_8}_{\Delta} \sim \underbrace{2Q + 2P + 2P_2 + \dots + 2P_8}_{(af+bq)^2 \neq (\lambda f + \mu q)^2},$$

where Δ is the unique sextic curve that has seven double points at P_2, \ldots, P_8 and a triple point at P. Notice that

$$\binom{6+2}{2} - 7\binom{2+1}{2} - \binom{3+1}{2} = 1,$$

so such a sextic does indeed exist and is unique. In order for $\lambda f + \mu g$ to intersect Δ with multiplicity 4 at P, $\lambda f + \mu g$ must have a tangent direction at P equal to one of the three tangent directions of Δ at P. Therefore there are three possibilities for $(\lambda, \mu) \in \mathbb{P}^1$, and so there are three fibres whereupon $P = -P \mod Q$.

Similarly, e_2 has a point whose inverse mod Q is on e_1 when $P_2 = -P \mod Q$ on a fibre. Then $\tau Q = \overline{PP_2}$ and so $2Q \sim P + P_2$. Then

$$3P + 3P_2 + 2P_3 + \cdots + 2P_8 \sim 2Q + 2P + 2P_2 + \cdots + 2P_8$$
.

Now we must answer "for how many $(\lambda, \mu) \in \mathbb{P}^1$ does there exist a sextic whose intersection product with $\lambda f + \mu g$ is $3P + 3P_2 + 2P_3 + \cdots + 2P_8$?" We can design a sextic with six double points at P_3, \ldots, P_8 and have

$$28 - 6 * 3 = 10$$
 conditions to spare.

If we just use Δ again, we can see that there will be 2 (λ, μ) -points. The tangent line of $\lambda f + \mu g$ will intersect Δ at P_2 with multiplicity 3 twice: once for each time the tangent line of $\lambda f + \mu g$ at P_2 equals one of the two tangent lines of Δ at P_2 . Therefore there are two fibres whereupon $P = -P_2 \mod Q$.

I want to prove that a base point of general pencil will be flex on three fibres (and every other base point is equal to τP on one fibre). For the fibre $\lambda f + \mu g$, P will be flex if $3P \sim \ell$. So for example $3P \sim 2Q + \tau Q$, or $\tau Q = -\beta(P) \mod P$.

There exists a sextic curve that whose intersection product with $\lambda f + \mu g$ is $P + 2P_2 + \cdots + 2P_8 + \ell$ where ℓ is the class of three colinnear points (in fact there is a \mathbb{P}^2 of sextics that have seven double points and four normal points). Then

$$3P \sim \ell$$

is equivalent to

$$4P + 2P_2 + \dots + 2P_8 \sim P + 2P_2 + \dots + 2P_8 + \ell$$
.

There exists a unique sextic curve Δ that has a triple point at P and double points at P_2, \ldots, P_8 . Then

$$\Delta.(\lambda f + \mu g) = 4P + 2P_2 + \dots + 2P_8$$

only when $\lambda f + \mu g$ is tangent to one of the slopes of Δ at P. Since it is a triple point, this happens three times.