
Math 369 Midterm 2 Topics 17 April 2024

Part 1: Functions

Definition 1. A function from the set A to the set B takes as inputs the elements of A
and assigns each input to one element of B. The sentence “f is a function from A to B” is
written as “f : A → B.” Here A is the domain of f and B is the codomain.

IMPORTANT: Two functions f : A → B and g : X → Y are the same if and only if
A = X and B = Y and f(a) = g(a) for all a ∈ A. Then we write f = g.

The functions f : R → R defined as f(x) = x2, g : R → [0,∞) defined as g(x) = x2, and
h : [0,∞) → [0,∞) defined as h(x) = x2 are three different functions.

Example 1. Let P be the set of people and let D be the set of days. Then there is a
function f : P → D that receives the input of a person and outputs that person’s birthday.

Example 2. Let P be the set of people and let J be the set of days in June. Then the
relation g : P → J that receives the input of a person and outputs that person’s birthday is
not a function, because not everyone’s birthday is in June, so those inputs have no output.

Example 3. Let D be the set of days and let P be the set of people. Then the relation
h : D → P that receives the input of a day and outputs the people having that day as a
birthday is not a function because more than one person is born on a given day.

Definition 2. Let f : A → B be a function. The image (aka range) of f is the set
img(f) = {b ∈ B : b = f(a) for some a ∈ A}. That is, the image of f is the set of all
outputs.

Definition 3. Let f : A → B be a function. Then f is injective (aka one-to-one) if
f(a) = f(a′) implies a = a′. (Intuitively, this means that no two inputs have the same
output.)

Definition 4. Let f : A → B be a function. Then f is surjective (aka onto) if img(f) =
B. (Intuitively, if every element of the codomain is the output of some input from the
domain.)

Definition 5. Let f : A → B be a function. Then f is bijective (aka invertible) if f is
both injective and surjective.

Definition 6. Let f : A → B be a function. Then an inverse of f is a function g : B → A
such that g(f(a)) = a and f(g(b)) = b for all a ∈ A and all b ∈ B.

Inverses are unique.

Proof. Let f : A → B, and let g : B → A and h : B → A both be inverses of f , and we will
prove that g = h. Let b ∈ B. Then g(b) = h(f(g(b))) = h(b). So g = h.

Since inverses are unique, it makes sense to speak of the inverse of a function f , which
we can write as f−1.

Bijective functions have inverses.
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Proof. Let f : A → B be bijective. Then for all outputs b ∈ B there is exactly one element
a ∈ A such that f(a) = b. Then we can construct a function g : B → A such that g(b)
is this unique element of A. This is an inverse of f because g(f(a)) = a by definition and
f(g(b)) = b by definition.

Non-injective functions are not invertible.
If f : A → B is not injective, then a, a′ ∈ A where a′ ̸= a and f(a) = f(a′) = b. Then the

supposed “inverse” will have more than one output for the input b, so cannot be a function.
Non-surjective functions are not invertible
If f : A → B is not surjective, then there is some b ∈ B such that f(a) ̸= b for all a ∈ A.

Then the supposed “inverse” will not provide an output for b, so cannot be a function.
Thus only bijective functions have inverses (hence the name ‘invertible’).
The existence of a bijection between two sets A and B indicates that A and B are the

“same” in a sense, even if they are not literally the same. Later on we will see this “sameness”
has a more specific name: isomorphic!

Example 4. There is no bijection between A = {1, 2} and B = {1, 2, 3}. Any function
f : A → B will fail to be surjective, and any function g : B → A will fail to be injective. A
is smaller than B.

Example 5. The sets A = {1, 2, 3} and B = {11, 12, 13} have a bijection f : A → B
satisfying f(x) = x+ 10. A and B have the same size (aka “cardinality”).

Part 2: Linear Transformations

Definition 7. Let V and U be vector spaces. A linear transformation from V to U is a
function T : V → U satisfying the two conditions:

• T (v + v′) = T (v) + T (v′) for all v, v′ ∈ V ,

• T (sv) = sT (v) for all s ∈ R and v ∈ V .

Example 6. The function T : R2 → R3 satisfying T

([
a
b

])
=

 2a+ 3b
5a− 7b
11a+ 13b

 is a linear

transformation. Check:

• T

([
a
b

]
+

[
a′

b′

])
= T

([
a+ a′

b+ b′

])
=

 2(a+ a′) + 3(b+ b′)
5(a+ a′)− 7(b+ b′)
11(a+ a′) + 13(b+ b′)

 =

 2a+ 3b
5a− 7b
11a+ 13b

+
 2a′ + 3b′

5a′ − 7b′

11a′ + 13b′

 =

T

([
a
b

])
+ T

([
a′

b′

])
.

• T

(
s

[
a
b

])
= T

([
sa
sb

])
=

 2sa+ 3sb
5sa− 7sb
11sa+ 13sb

 =

 s(2a+ 3b)
s(5a− 7b)
s(11a+ 13b)

 = s

 2a+ 3b
5a− 7b
11a+ 13b

 =

sT

([
a
b

])
.
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NOTE: If T : V → U is a linear transformation, then T (⃗0) = 0⃗.

Proof. Let T be linear. Then T (⃗0) = T (0 · 0⃗) = 0 · T (⃗0) = 0⃗.

Example 7. The function f : R2 → R2 satisfying f

([
a
b

])
=

[
a+ 1
b

]
is NOT linear.

We can tell this by observing that T

([
0
0

])
=

[
1
0

]
̸=
[
0
0

]
.

Example 8. The function f : R2 → R2 defined as f

([
a
b

])
=

[
a2

b2

]
is NOT linear.

We can tell this by looking at the scalar rule:

T

(
s

[
a
b

])
= T

([
sa
sb

])
=

[
(sa)2

(sb)2

]
= s2

[
a2

b2

]
̸= s

[
a2

b2

]
= sT

([
a
b

])
.

Example 9. Let A be the matrix

 2 3
5 −7
11 13

. Then the function T : R2 → R3 satisfying

T (v⃗) = Av⃗ is a linear transformation. We can tell this by checking the two rules:

• T (v⃗ + u⃗) = A(v⃗ + u⃗) = Av⃗ + Au⃗ = T (v⃗) + T (u⃗).

• T (sv⃗) = A(sv⃗) = sAv⃗ = sT (v⃗).

This is the same linear transformation as in Example 6!
Every linear transformation T : Rn → Rm has a matrix associated to it. You can find

what this matrix is by finding out what happens to the vectors of the standard basis.

Proposition 1. Let T : Rn → Rm be a linear transformation, and let {e⃗1, . . . , e⃗n} be the
standard basis for Rn. Then the matrix for T is

A =
[
T (e⃗1) T (e⃗2) · · · T (e⃗n)

]
.

That is, T (v⃗) = Av⃗ for every v⃗ ∈ Rn.

Example 10. Suppose T : R3 → R4 is a linear transformation where we are given

T

10
0

 =


6
7
8
5



T

01
0

 =


10
−33
15.5
16



T

00
1

 =


−4
2
1
0.9

 .
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Then the matrix for T is

A =


6 10 −4
7 −33 2
8 15.5 1
5 16 0.9

 .

When you have a basis {v⃗1, . . . , v⃗ℓ} for a subspace V ⊆ Rn, and you know the outputs
T (v⃗1), . . . , T (v⃗ℓ), then you can calculate T (v⃗) for any v⃗ ∈ V by writing v⃗ as a linear combi-
nation of the basis vectors

v⃗ = s1v⃗1 + · · ·+ sℓv⃗ℓ

and then evaluate T (v⃗) as

T (v⃗) = T (s1v⃗1 + · · · sℓv⃗ℓ) = s1T (v⃗1) + · · · sℓT (v⃗ℓ).

Example 11. Suppose T : R3 → R4 is a linear transformation where we are given

T

21
1

 =


4
1
5
6



T

31
0

 =


0
2
7
8

 .

Then we have enough information to calculate T

23
7

 but not T

23
8

.

For the former,

23
7

 = 7

21
1

− 4

31
0

, so

T

23
7

 = T

7

21
1

− 4

31
0

 = 7T

21
1

− 4T

31
0

 = 7


4
1
5
6

− 4


0
2
7
8

 =


28
−1
7
10

 .

On the contrary,

23
8

 /∈ span


21
1

 ,

31
0

, so we do not have enough information to find

T

23
8

.
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So if you have a linear transformation T : Rn → Rm with a basis {v⃗1, . . . , v⃗n} for Rn for
which you know the outputs T (v⃗1), . . . , T (v⃗n), then you can find a matrix for T by finding
out what the outputs of the standard basis vectors are. To do this, write each standard basis
vector e⃗i as a linear combination of the basis vectors you are given:

e⃗i = si,1v⃗i + · · ·+ si,nv⃗n.

Then you can calculate T (e⃗i) as

T (e⃗i) = si,1T (v⃗1) + · · ·+ si,nT (v⃗n)

and then use Proposition 1 to construct the matrix for T by using T (e⃗i) as the columns:[
T (e⃗1) · · · T (e⃗n)

]
.

Another way you can construct the matrix is by using Proposition 2:

Proposition 2. Let T : Rn → Rm be a linear transformation. Let {v⃗1, . . . , v⃗n} be any basis
for Rn. Then you can calculate the matrix for T by first constructing the matrix

A =
[
T (v⃗1) · · · T (v⃗n)

]
whose columns are the outputs T (v⃗i) and the matrix

B =
[
v⃗1 · · · v⃗n

]
whose columns are the basis vectors v⃗i. Then the matrix for T is

AB−1.

Example 12. Suppose T : R3 → R4 is a linear transformation where we are given

T

21
1

 =


4
1
5
6



T

31
0

 =


0
2
7
8



T

01
2

 =


1
3
4
6

 .
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Note that


21
1

 ,

31
0

 ,

01
2

 is indeed a basis for R3. Then we can construct the matrix

for T by first constructing

A =


4 0 1
1 2 3
5 7 4
6 8 6


and

B =

2 3 0
1 1 1
1 0 2

 .

Then the matrix for T is

AB−1 =


4 0 1
1 2 3
5 7 4
6 8 6


2 3 0
1 1 1
1 0 2

−1

=


4 0 1
1 2 3
5 7 4
6 8 6


 2 −6 3
−1 4 −2
−1 3 −1

 =


7 −21 11
−3 11 −4
−1 10 −3
−2 14 −4

 .

This allows us to calculate

T

23
7

 =


7 −21 11
−3 11 −4
−1 10 −3
−2 14 −4


23
7

 =


28
−1
7
10

 (which matches what we got in Example 11!)

and also

T

23
8

 =


7 −21 11
−3 11 −4
−1 10 −3
−2 14 −4


23
8

 =


39
−5
4
6

 .

Now we will move on to surjectivity and injectivity.

Proposition 3. Let T : Rn → Rm be a linear transformation and let A be the m×n matrix
associated to T . Then

img(T ) = img(A)

where the img(T ) is the image in the function sense (i.e. the image of a function is the set
of all outputs) and the img(A) is the image in the matrix sense (i.e. the image of A is the

set of all vectors b⃗ ∈ Rm such that there is some vector x⃗ ∈ Rn satisfying Ax⃗ = b⃗).

Recall that img(A) = col(A), the column space of A (i.e., the vector space spanned by the
columns of A). Additionally, recall that the dimension of the column space is equal to the
rank of A. Thus we can investigate the dimension of the image of T (and by extension
whether T is surjective or not) by calculating the rank of its matrix A.

Proposition 4. Let T : Rn → Rm be a linear transformation and let A be the m×n matrix
associated to T . Then T is surjective if and only if rank(A) = m (the number of rows of A).
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On the flip side, we can investigate the injectivity of A by looking at the nullity. Recall
that for an m × n matrix A, the nullspace of A is null(A) = {v⃗ ∈ Rn : Av⃗ = 0⃗}, and
nullity(A) = dim(null(A)). For a linear function T : Rn → Rm with associated matrix A,
the nullspace of A is called the kernel of T , denoted ker(T ).

Proposition 5. Let T : Rn → Rm be a linear transformation and let A be the m×n matrix
associated to T . Then T is injective if and only if null(A) = {⃗0} (i.e. nullity(A) = 0).

Proof. First, assume that T is injective. Then no two distinct inputs can have the same
output. Since it follows quickly from the definition of linear functions that T (⃗0) = 0⃗, we
must have 0⃗ ∈ null(A). Since T is injective, no other inputs may have an output of 0⃗, so 0⃗
must be the only thing in the nullspace. So null(A) = {⃗0}.

Now for the reverse direction, assume that null(A) = {⃗0}. We want to prove that this is
sufficient for T to be injective. Let u⃗, v⃗ ∈ Rn have the same outputs, so T (u⃗) = T (v⃗). We
want to reach the conclusion that u⃗ = v⃗. Since T (u⃗) = T (v⃗), then T (u⃗)−T (v⃗) = 0⃗. Since T
is linear, this means T (u⃗− v⃗) = 0⃗, so u⃗− v⃗ ∈ null(A). Since we entered this argument with
the assumption that null(A) = {⃗0}, we are forced to conclude that u⃗− v⃗ = 0⃗ and so u⃗ = v⃗.
Thus T is injective.

At this point it is useful to restate the Rank-Nullity Theorem:

Theorem 1: Rank-Nullity. Let A be an m× n matrix. Then

rank(A) + nullity(A) = n (the number of columns).

This means that whenever you know the rank of a matrix A, you are a very short calculation
away from also knowing the nullity! (And vice-versa!) In other words, if you know whether
a function is surjective, you are a very short calculation away from also knowing whether it
is injective! (And vice-versa!)

Proposition 6. Let A be any m×n matrix and let B be an invertible n×n matrix. Then
rank(AB−1) = rank(A) and nullity(AB−1) = nullity(A).

Example 13. Let T : R3 → R4 be a linear transformation satisfying

T

21
1

 =


1
0
0
0



T

31
0

 =


0
1
0
0



T

01
2

 =


5
9
0
0


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Then we can construct the matrix for T by setting up

A =


1 0 5
0 1 9
0 0 0
0 0 0


and

B =

2 3 0
1 1 1
1 0 2


and calculating

AB−1 =


1 0 5
0 1 9
0 0 0
0 0 0


2 3 0
1 1 1
1 0 2

−1

=


1 0 5
0 1 9
0 0 0
0 0 0


 2 −6 3
−1 4 −2
−1 3 −1

 =


−3 9 −2
−10 31 −11
0 0 0
0 0 0

 .

Then we can perform row operations on


−3 9 −2
−10 31 −11
0 0 0
0 0 0

 to get it into row echelon form


1 −3 2

3

0 1 −13
3

0 0 0
0 0 0

 and calculate that the rank is 2. Therefore, the linear transformation T is

NOT surjective because the rank would have to be 4 for T to be surjective.
Using Rank-Nullity, we can also calculate nullity(A) using the equation

rank(A) + nullity(A) = 3

and solving for nullity(A) = 1. Therefore T is not injective either, because the nullity of A
is not 0.

Note that because of Proposition 6, we can actually skip calculating B−1 and just use

A =


1 0 5
0 1 9
0 0 0
0 0 0

 instead, since rank(A) = rank(AB−1). This is useful because A is already

in reduced row echelon form, so we can automatically see that its rank is 2, and then use
Rank-Nullity to find that its nullity is 1.

Proposition 7. Let T : Rn → Rm be a linear transformation. Then:

• T CANNOT be surjective if n < m.

• T CANNOT be injective if n > m.

• If T is bijective (and therefore invertible), then n = m.

8
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The converses of the above three statements are not true in general. That is,

• Just because n ≥ m does not necessarily mean T is surjective.

• Just because n ≤ m does not necessarily mean T is injective.

• Just because n = m doe snot necessarily mean T is invertible.

A good example to keep in mind here is the so-called “zero transformation:” that is, a
function T : Rn → Rm such that T (v⃗) = 0⃗ for all v⃗ ∈ Rn. This is a linear transformation
because

• T (u⃗+ v⃗) = 0⃗ and T (u⃗) + T (v⃗) = 0⃗ + 0⃗ = 0⃗, so T (u⃗+ v⃗) = T (u⃗) + T (v⃗),

• and T (sv⃗) = 0⃗ and sT (v⃗) = s⃗0 = 0⃗, so T (sv⃗) = sT (v⃗).

But T cannot be injective or surjective for any positive numbers n and m, and so will also
not be invertible.

Proposition 8. A linear transformation T : Rn → Rn is invertible if and only if its associ-
ated linear transformation A has a non-zero determinant.

Definition 8. Let T : V → U be a bijective linear transformation. Then T is called an
isomorphism. If two vector spaces V and U have an isomorphism between them, then V
and U are said to be isomorphic.

Part 3: Special Linear Transformations

Two kinds of special linear transformations we will observe are rotations and reflections.

Definition 9. In R2, a rotation of the plane by an angle of θ in the counter-clockwise
direction is a linear transformation T : R2 → R2. It is given by the matrix[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Note that every rotation is invertible because the determinant of the above 2× 2 matrix is
cos2(θ) + sin2(θ) = 1. This makes intuitive sense too: you can always undo a rotation by
rotating by the same angle in the other direction!

Definition 10. In R2, reflecting over the line y = mx through the origin is a linear trans-
formation T : R2 → R2 given by

1

m2 + 1

[
1−m2 2m
2m m2 − 1

]
.

Note that the determinant of a reflection is

(1−m2)(m2 − 1)− 4m2

(m2 + 1)2
=

−1 + 2m2 −m4 − 4m2

(m2 + 1)2
= −m4 + 2m2 + 1

(m2 + 1)2
= −(m2 + 1)2

(m2 + 1)2
= −1

so a reflection is also always invertible.

9
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Also note that our definition of reflection does not include the possibility of flipping over the
line x = 0 (the y-axis), which has a slope of infinity. To account for this, we can calculate

lim
m→∞

[
1−m2

m2+1
2m

m2+1
2m

m2+1
m2−1
m2+1

]
=

[
−1 0
0 1

]
,

or we can simply calculate the outputs for the standard basis vectors

[
1
0

]
and

[
0
1

]
: the

output for

[
1
0

]
when reflected over the y-axis is

[
−1
0

]
and the output for

[
0
1

]
when reflected

over the y-axis is

[
0
1

]
(because this vector is on the y-axis, so it does not move). Putting

these outputs together, we get the matrix

[
−1 0
0 1

]
as before.

If T : U → V and S : V → W are linear transformations associated to matrices A and
B respectively, you can find a matrix for the composition of functions S ◦ T as the product
BA. Similarly, if T : U → V is an invertible linear transformation associated to the matrix
A, then the matrix for the inverse function T−1 : V → U is given by A−1.

Part 4: Spectral Theory

Definition 11. Let T : Rn → Rn be a linear transformation with associated n × n matrix
A. An eigenvector of A is a nonzero vector v⃗ such that Av⃗ = sv⃗ for some scalar s ∈ R. In
this case, s is the eigenvalue for v⃗.

Example 14. Let T : R2 → R2 be the linear transformation given by the matrix

A =

[
2 0
0 −3

]
.

Then

T

([
1
0

])
=

[
2
0

]
= 2

[
1
0

]
,

so

[
1
0

]
is an eigenvector of A and 2 is its eigenvalue. Additionally,

T

([
0
1

])
=

[
0
−3

]
= −3

[
0
1

]
,

so

[
0
1

]
is an eigenvector and −3 is its eigenvalue.

Note that any nonzero multiple of an eigenvector is another eigenvector with the same
eigenvalue. For example,

T

([
18
0

])
=

[
36
0

]
= 2

[
18
0

]
,

10
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so

[
18
0

]
is also an eigenvector with an eigenvalue of 2. But not necessarily will every vector

be an eigenvector. For example

[
4
5

]
is not an eigenvector because

T

([
4
5

])
=

[
8

−15

]
,

and

[
8

−15

]
is not a scalar multiple of

[
4
5

]
.

Definition 12. Let A be a square matrix. The set of all eigenvalues of A is called the
spectrum of A.

To find the eigenvalues of an n × n matrix A, first note that s is an eigenvalue if there is
some nonzero vector v⃗ such that

Av⃗ = sv⃗.

Inserting the identity matrix In into the equation gives us

Av⃗ = sInv⃗

(we can do this because multiplying by the identity matrix In doesn’t actually change the
result, but we will need it when we modify the equation later). Subtracting sInv⃗ from both
sides yields

Av⃗ − sInv⃗ = 0⃗,

and now we can factor v⃗ from both terms and get

(A− sIn)v⃗ = 0⃗

(this is where the inclusion of the In is important: A− sIn is the difference of two matrices,
which is valid; but just A− s is the difference of a matrix and a number, which is not valid).

From this last equation, we have v⃗ ∈ null(A − sIn), but remember eigenvectors are
nonzero! So that means the matrix A − sIn has something nonzero in its nullspace, which
means it cannot be injective and so it cannot be invertible! In other words,

det(A− sIn) = 0.

So to find eigenvalues of A, we need to find what values of make the determinant of A− sIn
zero.

Definition 13. Let A be an n×n matrix and let s be a variable, and In is the n×n identity
matrix. Then

det(A− sIn)

is a degree-n polynomial. This is called the characteristic polynomial of A, and it is
denoted cA(s).

11
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Thus the eigenvalues of A are the roots of the characteristic polynomial of A.

Example 14 continued. Let’s return to the matrix A =

[
2 0
0 −3

]
and calculate cA(s). We

have

A− sI2 =

[
2 0
0 −3

]
−
[
s 0
0 s

]
=

[
2− s 0
0 −3− s

]
,

and so the determinant (and thus cA(s)) is (2− s)(−3− s). The roots of this polynomial are
s = 2 and s = −3, which match the eigenvalues we got earlier.

When finding eigenvalues, the best kind of matrix to encounter is a diagonal matrix :

Definition 12. A diagonal matrix is a square matrix D where Dij = 0 for all entries
where i ̸= j (i.e. for entries where the row number is different from the column number). In
other words, D is diagonal if every entry that is not on the “main diagonal” of D is 0.

For example,

1 0 0
0 7 0
0 0 −14

, [0 0
0 0

]
,


6 0 0 0
0 7 0 0
0 0 −11 0
0 0 0 0

 are all diagonal matrices.

Proposition 9. Let D be a diagonal matrix. Then the eigenvalues for D are the entries on
the main diagonal of D.

For example, the eigenvalues of

1 0 0
0 7 0
0 0 −14

 are 1, 7, and −14, the eigenvalues of

[
0 0
0 0

]
,

are just 0, and the eigenvalues of


6 0 0 0
0 7 0 0
0 0 −11 0
0 0 0 0

 are 6, 7, −11, and 0.

Example 15. Let A =

[
7 5

−10 −8

]
. Since A is not diagonal, we will have to use the

characteristic polynomial to find the eigenvalues of A. We get

A− sI2 =

[
7− s 5
−10 −8− s

]
,

which has a determinant of

(7− s)(−8− s) + 50 = −56− 7s+ 8s+ s2 + 50 = s2 + s− 6 = (s− 2)(s+ 3).

So the roots of the characteristic polynomial are s = 2 and s = −3.
Now we can go another step and find the eigenvectors: to do this, we need to plug in our

eigenvalues for s in

[
7− s 5
−10 −8− s

]
and find the nullspaces of the resulting matrices.

12
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We will begin with the eigenvalue of 2. We want to find a solution to the augmented
matrix [

5 5 0
−10 −10 0

]
.

Getting this into reduced row echelon form, we have[
1 1 0
0 0 0

]
,

and so (using x and y as variables for the first and second columns, respectively) we have
x as the basic variable and y as the free variable. Therefore we can parametrize y with the
parameter t and then the first row tells us x + t = 0, so x = −t. Thus the parametrization
for the solution set is

x = −t

y = t,

or written as vectors, [
x
y

]
= t

[
−1
1

]
.

Therefore any scalar multiple of

[
−1
1

]
is an eigenvector for the eigenvalue of 2. Since we are

just interested in finding one, we can just pick t = 1 and use

[
−1
1

]
as our eigenvector. We

can confirm this by multiplying[
7 5

−10 −8

] [
−1
1

]
=

[
−7 + 5
10− 8

]
=

[
−2
2

]
= 2

[
−1
1

]
.

Now for the eigenvalue of −3, we get[
10 5 0
−10 −5 0

]
,

and using row operations we get the reduced row echelon form[
1 1/2 0
0 0 0

]
.

So we get again x is basic and y is free: thus we parametrize y as y = t and use the first row
to get the equation x+ 1

2
t = 0, so the parametrization is

x = −1

2
t

y = t,

13
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or written as vectors, [
x
y

]
= t

[
−1/2
1

]
.

So any scalar multiple of

[
−1/2
1

]
is an eigenvector for the eigenvalue of −3. Since we’re just

interested in finding one, we can set t = 2 to get rid of the fractions and get

[
−1
2

]
as our

eigenvector for the eigenvalue −3. We can confirm this by multiplying[
7 5

−10 −8

] [
−1
2

]
=

[
−7 + 10
10− 16

]
=

[
3
−6

]
= −3

[
−1
1

]
.

Note in this example, A =

[
7 5

−10 −8

]
has the same eigenvalues as the diagonal matrix

D =

[
2 0
0 −3

]
, but only the eigenvectors are different. In fact, using the eigenvectors

[
−1
1

]
and

[
−1
2

]
we found earlier, we can be more specific about the relationship between A and

D! Putting the eigenvectors together in the matrix P =

[
−1 −1
1 2

]
, we find A = PDP−1.

To understand where this relationship comes from, let’s break down the product[
−1 −1
1 2

]
︸ ︷︷ ︸

P

[
2 0
0 −3

]
︸ ︷︷ ︸

D

[
−1 −1
1 2

]−1

︸ ︷︷ ︸
P−1

in detail, by analyzing [
−1 −1
1 2

] [
2 0
0 −3

] [
−1 −1
1 2

]−1 [−1
1

]
and

[
−1 −1
1 2

] [
2 0
0 −3

] [
−1 −1
1 2

]−1 [−1
2

]
.

As a function, P sends an input of

[
1
0

]
to an output of

[
−1
1

]
. That means that P−1

reverses that direction: P−1 receives an input of

[
−1
1

]
and outputs

[
1
0

]
. Then nextD receives[

1
0

]
as an input and outputs

[
2
0

]
as a result. Finally, P receives an input of

[
2
0

]
= 2

[
1
0

]
and outputs 2

[
−1
1

]
=

[
−2
2

]
. So all together, PDP−1 takes an input of

[
−1
1

]
and outputs[

−2
2

]
, just like A does!

14
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A similar analysis reveals that PDP−1 takes an input of

[
−1
2

]
to an output of

[
3
−6

]
(because P−1 carries

[
−1
2

]
to

[
0
1

]
, which D carries to

[
0
−3

]
, which P carries to

[
3
−6

]
). This

again matches A. This is sufficient to confirm the equation A = PDP−1.

The specific name for this relationship between A and D is called similarity :

Definition 13. Let A and B be square matrices. Then A is similar to B if there is an
invertible matrix P such that A = PBP−1. The sentence “A is similar to B” can be written
in shorthand as A ∼ B.

Proposition 10. Let A, B and C be square matrices. Then the following are always true:

• A ∼ A (Reflexive).

• If A ∼ B then B ∼ A (Symmetric).

• If A ∼ B and B ∼ C, then A ∼ C (Transitive).

Furthermore, suppose A ∼ B. Then:

• det(A) = det(B).

• cA(s) = cB(s).

• A and B have the same eigenvalues.

• rank(A) = rank(B).

• nullity(A) = nullity(B).

Knowing that a matrix A is similar to a diagonal matrix is very useful, because a lot of the
above information is easy to compute for a diagonal matrix, and that information can then
be carried back to A.

Definition 14. A square matrix A is called diagonalizable if it is similar to some diagonal
matrix D. In this case, D is then called a diagonalization of A.

So returning to Example 15, we have[
7 5

−10 −8

]
∼
[
2 0
0 −3

]
,

so

[
7 5

−10 −8

]
is diagonalizable and

[
2 0
0 −3

]
is a diagonalization of

[
7 5

−10 −8

]
.

Diagonal matrices are nice because their powers are easy to calculate: if D is diagonal,
then the (i, j) entry of Dn is the nth power of the (i, j) entry of D. To put it another way,
[Dn]ij = [Dij]

n.

For example,

[
2 0
0 −3

]10
=

[
210 010

010 (−3)10

]
=

[
1024 0
0 59049

]
.

15
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Proposition 11. Let A = PBP−1. Then An = PBnP−1, for any n.

Proof. This will be a good introduction to what is known as a proof by induction. A proof
by induction breaks into two basic steps: known as the “base case” and the “inductive step.”

The base case is about proving what you want to prove for a specific value n. You want
this value of n to be low, so we will prove that the claim is true for n = 2, as follows:

• Base Case: We will prove the claim for n = 2. That is, we will prove that A2 =
PB2P−1. We get

A2 = (PBP−1)2 = PBP−1PBP−1 = PBBP−1 = PB2P−1.

Thus the claim is true for when n = 2, so we are done with the Base Case.

• Inductive Step: The point of the inductive step is to prove that the claim is true
for every value of n bigger than the one in the Base Case. For this, we will start
by assuming the “inductive hypothesis:” the inductive hypothesis is that the claim is
already true for one value of n, and we just want to prove it is true for n+ 1.

Specifically, we will assume that An = PBnP−1 for a generic value n, and we want to
use the assumption that An = PBnP−1 to prove that An+1 = PBn+1P−1. To do this,
we can write

An+1 = (PBP−1)n+1 = (PBP−1)n(PBP−1)

= (PBnP−1)︸ ︷︷ ︸
inductive hypothesis

(PBP−1) = PBnBP−1 = PBn+1P−1.

And so we know that An+1 = PBn+1P−1 from the assumption that An = PBnP−1.

Together, the Base Case and the Inductive Step prove that the claim is true for any value of
n ≥ 2. This is because the Base Case proved that the claim is true for when n = 2, and the
Inductive Step tells us that because the claim is true when n = 2, it must be true for 2 + 1.
And then since the claim is true for 3, the Inductive Step says it must be true for 3 + 1 and
so on.

Example 16. Consider the matrix A =

19 232 −190
11 155 −125
15 208 −168

. We want to calculate A100. The

eigenvalues of A are 1, 2, and 3. In fact, we can write the diagonalization of A as19 232 −190
11 155 −125
15 208 −168


︸ ︷︷ ︸

A

=

13 10 4
8 5 3
11 7 4


︸ ︷︷ ︸

P

1 0 0
0 2 0
0 0 3


︸ ︷︷ ︸

D

−1 −12 10
1 8 −7
1 19 −15


︸ ︷︷ ︸

P−1

.

Then
A100 = PD100P−1.

16
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Then since D is diagonal, D100 is relatively easy to calculate:

D100 =

1100 0 0
0 2100 0
0 0 3100

 =

1 0 0
0 2100 0
0 0 3100

 .

Then

A100 =

13 10 4
8 5 3
11 7 4

1 0 0
0 2100 0
0 0 3100

−1 −12 10
1 8 −7
1 19 −15


=

10 ∗ 2100 + 4 ∗ 3100 − 13 80 ∗ 2100 + 76 ∗ 3100 − 156 −70 ∗ 2100 − 60 ∗ 3100 + 130
5 ∗ 2100 + 3 ∗ 3100 − 8 40 ∗ 2100 + 57 ∗ 3100 − 96 −35 ∗ 2100 − 45 ∗ 3100 + 80
7 ∗ 2100 + 4 ∗ 3100 − 11 56 ∗ 2100 + 76 ∗ 3100 − 132 −49 ∗ 2100 − 60 ∗ 3100 + 110

 ,

which is easier than multiplying A by itself one hundred times (both for people and for
computer programs!).

Definition 15. Let A be an n×n matrix and let λ (“lambda”) be an eigenvalue of A. Then
the eigenspace of λ, denoted Eλ(A), is the nullspace of A− λIn:

Eλ(A) = null(A− λIn).

Example 15 continued. For A =

[
7 5

−10 −8

]
, we have the two eigenvalues 2 and −3. The

eigenspace for the eigenvalue of 2 is the nullspace of A − 2I2 =

[
5 5

−10 −10

]
. We already

solved this system of equations when we found the eigenvector in Example 15. The nullspace

of A− 2I2 is span

{[
−1
1

]}
. Therefore

E2(A) = span

{[
−1
1

]}
.

Similarly,

E−3(A) = null(A+ 3I2) = null

([
10 5
−10 −5

])
= span

{[
−1
2

]}
.

So in summary, the eigenspace of λ is the set of all eigenvectors for λ for the matrix A.

Definition 16. Let f(x) be a polynomial, and let r be a root of f (i.e. f(r) = 0). The
multiplicity of r as a root of f is the largest number m such that f(x) is divisible by
(x− r)m. In other words, the largest m such that

f(x)

(x− r)m

is a polynomial.

17
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Example 17. Let’s consider the polynomial f(x) = (x − 2)3(x − 4)6(x + 1). In this case,
f(x) is divisible by (x− 2)3 but not by (x− 2)4, so the multiplicity of 2 as a root of f is 3.
Similarly, f(x) is divisible by (x− 4)6 but not by (x− 4)7, so the multiplicity of 4 as a root
of f is 6. And since f(x) is divisible by (x + 1) but not by (x + 1)2, the multiplicity of −1
as a root of f is 1.

When your polynomial is completely factored (as in the above example), it is straightforward
to find the multiplicity of each root, as the multiplicities are equal to the numbers in each
exponent. In other cases, there is an alternative method you can use to determine the
multiplicity of a root.

Proposition 12. Let f(x) be a polynomial, and let r be a root of f . Then the multiplicity
of r as a root of f is the smallest number m such that

f (m)(r) ̸= 0,

where f (m) is the mth order derivative, as from calculus.

Example 18. Let’s see this work with a known example: let f(x) = (x− 2)3. We can tell
just by the exponent that the multiplicity of the root x = 2 is 3. But if we were to apply
Proposition 12, we get

f(2) = (2− 2)3 = 0

f ′(2) = 3(2− 2)2 = 0

f ′′(2) = 6(2− 2) = 0

f ′′′(2) = 6 ̸= 0,

so we need to take the derivative of f(x) three times for 2 to stop being a root. So according
to Proposition 12, the multiplicity of 2 as a root of f(x) is 3, which is good because that
matches what we already knew.

Now we will return to characteristic polynomials:

Proposition 13. Let A be an n× n matrix and let cA(s) be the characteristic polynomial
of A. Let λ be a root of the characteristic polynomial of multiplicity mλ. Then

1 ≤ dimEλ(A) ≤ mλ,

where again Eλ(A) is the eigenspace of λ.
Furthermore, A is only diagonalizable if

dimEλ(A) = mλ

for all eigenvalues λ.

18
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Example 19. Let A =

−1 6 −10
0 5 −10
0 3 −6

. To find out if A is diagonalizable, first we need to

find its eigenvalues. Take the characteristic polynomial

cA(s) = det

−1− s 6 −10
0 5− s −10
0 3 −6− s


= (−1− s)((5− s)(−6− s) + 30)− 6(0)− 10(0) = −s3 − 2s2 − s.

This polynomial can be factored as

cA(s) = −s(s2 + 2s+ 1) = −s(s+ 1)2,

which has one root at s = 0 of multiplicity 1 and another root at s = −1 of multiplicity 2.
So now we know that

dimE−1(A) ≤ 2,

and A will only be diagonalizable if dimE−1(A) = 2. To figure out dimE−1(A), we need to
compute nullity(A+ I3). We can set up the augmented matrix0 6 −10 0

0 6 −10 0
0 3 −5 0

 .

Putting this in reduced row echelon form, we get0 1 −5/3 0
0 0 0 0
0 0 0 0

 .

Labeling the columns x, y, and z, we have one basic variable (y) and two free variables (x
and z). So we can parametrize x = t and z = u and use the first row of the matrix to give
us the equation y − 5

3
z = 0, so y = 5

3
u. So our full parametrization is

x = t

y =
5

3
u

z = u,

or written as a vector equation: xy
z

 = t

10
0

+ u

 0
5/3
1

 .

19



Math 369 Midterm 2 Topics 17 April 2024

Therefore the nullspace of A+I3 is two-dimensional, spanned by the vectors

10
0

 and

 0
5/3
1

.
Since the nullspace of A+ I3 is E−1(A), we can confirm that the eigenspace E−1(A) is two-
dimensional, and

E−1(A) = span


10
0

 ,

 0
5/3
1

 .

If we want to use a basis without any fractions, we can make an adjustment:

E−1(A) = span


10
0

 ,

05
3

 .

So we know that dimE−1(A) = 2. We also know from Proposition 13 that for the eigenvalue
of 0, 1 ≤ dimE0(A) ≤ 1, so E0(A) = 1. Therefore we know that A is diagonalizable, since
the dimension of each eigenspace is equal to the multiplicity of its corresponding eigenvalue.

Specifically, a diagonalization for A is D =

−1 0 0
0 −1 0
0 0 0

. Then in order to find the

matrix P such that A = PDP−1, we will need a basis for each eigenspace. We already have
a basis for the eigenspace E−1(A). So we just need to find a basis for E0(A). We need to
find the nullspace of A− 0I3 = A. We can set up the augmented matrix−1 6 −10 0

0 5 −10 0
0 3 −6 0


and get it into reduced row echelon form1 0 −2 0

0 1 −2 0
0 0 0 0

 .

So we have two basic variables (x and y) and one free variable (z). Then we can parametrize
z = t and use the first and second rows to solve for x and y and get

x = 2t

y = 2t

z = t,

which yields the vector equation xy
z

 = t

22
1

 ,
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so

E0(A) = null(A) = span


22
1

 .

So we can use the bases

E−1(A) = span


10
0

 ,

05
3

 and E0(A) = span


22
1


to set up the matrix

P =

1 0 2
0 5 2
0 3 1

 .

Then −1 6 −10
0 5 −10
0 3 6


︸ ︷︷ ︸

A

=

1 0 2
0 5 2
0 3 1


︸ ︷︷ ︸

P

−1 0 0
0 −1 0
0 0 0


︸ ︷︷ ︸

D

1 0 2
0 5 2
0 3 1

−1

︸ ︷︷ ︸
P−1

.

Note that the order of the columns matters here a little: The

10
0

 and

05
3

 columns need

to match the positions of the

−1
0
0

 and

 0
−1
0

 columns (but in either order), and the

22
1


column needs to match the position of the

00
0

 column. So another valid diagonalization

for A is −1 6 −10
0 5 −10
0 3 6

 =

0 1 2
5 0 2
3 0 1

−1 0 0
0 −1 0
0 0 0

0 1 2
5 0 2
3 0 1

−1

or even −1 6 −10
0 5 −10
0 3 6

 =

0 2 1
5 2 0
3 1 0

−1 0 0
0 0 0
0 0 −1

0 2 1
5 2 0
3 1 0

−1

.

Example 20. Consider the matrix A =

1 −7 12
0 −5 10
0 −3 6

. To find out if A is diagonalizable,

first we need to find its eigenvalues. Take the characteristic polynomial

cA(s) = det

1− s −7 12
0 −5− s 10
0 −3 6− s

 = (1− s)((−5− s)(6− s) + 30) = −s3 + 2s2 − s
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which factors as
−s(s2 − 2s+ 1) = −s(s− 1)2,

which has one root at s = 0 of multiplicity 1 and another root at s = 1 of multiplicity 2. So
we know that

dimE1(A) ≤ 2,

but A will only be diagonalizable if dimE1(A) = 2. To find E1(A), we need to find the
nullspace of A− I3. We can set up the augmented matrix0 −7 12 0

0 −6 10 0
0 −3 5 0

 ,

which has reduced row echelon form 0 1 0 0
0 0 1 0
0 0 0 0

 ,

which has two basic variables (y and z) and one free variable (x). So we can parametrize
x = t and use the first and second rows to solve for y and z: we get y = 0 and z = 0. So the
full parametrization of the nullspace is

x = t

y = 0

z = 0,

or xy
z

 = t

10
0

 .

So E1(A) is one-dimensional, because

E1(A) = span


10
0

 .

This means that A is not diagonalizable, since dimE1(A) < 2.

Part 5: Markov Matrices and Other Applications

Definition 17. A Markov matrix is a square matrix A such that

• A has no negative entries,

• The sum of the each column’s entries is 1.
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Proposition 14. Let A be an n× n Markov matrix. Then A has an eigenvalue of 1.

Proof. To show that A has an eigenvalue of 1, we need to show that det(A− In) = 0. Since
A is a Markov matrix, we know that the entries of each column add up to 1. Let

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n


where

n∑
i=1

ai,j = 1

for all j (i.e. each column’s entries add to 1). Then

A− In =


a1,1 − 1 a1,2 · · · a1,n
a2,1 a2,2 − 1 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n − 1

 .

Now the sum of all the entries of column j of A− In is(
n∑

i=1

ai,j

)
− 1 = 1− 1 = 0,

so all the entries of the columns of A − In add up to 0. So if we consider each column of
A− In as an individual vector,

v⃗1 =


a1,1 − 1
a2,1
...

an,1

 , v⃗2 =


a1,2

a2,2 − 1
...

an,2

 , · · · , v⃗n =


a1,n
a2,n
...

an,n − 1

 ,

we see that all the entries of the vectors v⃗j satisfy the homogeneous linear equation

x1 + x2 + · · ·+ xn = 0

because all the entries in each column add up to 0. As we learned in the very very beginning
of the semester, the solution sets of linear equations are n − 1-dimensional hyperplanes in
Rn. And since this linear equation is homogenous, its corresponding hyperplane contains
the origin, so it is a vector space! Specifically, the hyperplane is the nullspace of the matrix[

1 1 · · · 1
]
,

which yields 1 basic variable and n− 1 free variables.
So this means that the n vectors v⃗1, v⃗2, . . . , v⃗n are all in an n−1-dimensional vector space

together. Therefore dim span{v⃗1, . . . , v⃗n} ≤ n− 1 < n, so the vectors v⃗1, . . . , v⃗n are linearly
dependent. Since the v⃗j vectors are the columns of A−In, this means that rank(A−In) < n,
so A − In is not surjective, so A − In is not invertible, so det(A − In) = 0. Thus 1 is an
eigenvalue of A.
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Remark 1. Note that by the argument above, you can also say that if A is an n×n matrix
such that there is a number λ such that

n∑
i=1

ai,j = λ

for all j (i.e. the sum of each column’s entries is λ), then λ is an eigenvalue of A. Similarly,
if

n∑
j=1

ai,j = µ

for all i (i.e. the sum of each row’s entries is µ), then µ is an eigenvector of A.

One application of Markov matrices is to model migration patterns in a closed system.

Example 21. Suppose we know the following information about three locations: L1, L2,
and L3.

• 40% of the individuals in L1 in year t will remain in L1 in year t+ 1.

• 30% of the individuals in L1 in year t will move to L2 in year t+ 1.

• 30% of the individuals in L1 in year t will move to L3 in year t+ 1.

• 0% of the individuals in L2 in year t will move to L1 in year t+ 1.

• 90% of the individuals in L2 in year t will remain in L2 in year t+ 1.

• 10% of the individuals in L2 in year t will move to L3 in year t+ 1.

• 80% of the individuals in L3 in year t will move to L1 in year t+ 1.

• 10% of the individuals in L3 in year t will move to L2 in year t+ 1.

• 10% of the individuals in L3 in year t will remain in L3 in year t+ 1.

We can compile all this information into a Markov matrix

A =

0.4 0 0.8
0.3 0.9 0.1
0.3 0.1 0.1


where each the (i, j) entry of A reports what proportion of the population of location j will
move to location i each year.

Definition 18. A state vector x⃗t reports the state of a system being modeled by a matrix
A at time step t, where

x⃗t = Ax⃗t−1,

or alternatively
x⃗t = Atx⃗0.

24



Math 369 Midterm 2 Topics 17 April 2024

In our example, a state vector could look like x⃗0 =

10001600
4000

, which indicates that at time

step t = 0, the population of L1 is 1000, the population of L2 is 1600, and the population
at L3 is 4000.

Definition 19. A steady state vector x⃗s for a matrix A is a state vector such that

Ax⃗s = x⃗s,

in other words x⃗s is an eigenvector for the eigenvalue of 1. Recall that Markov matrices
always have an eigenvalue of 1 by Proposition 14, and so Markov matrices always have
steady state vectors.

Example 21 continued. Let’s bring back A =

0.4 0 0.8
0.3 0.9 0.1
0.3 0.1 0.1

 and let’s start out with

the initial state vector x⃗0 =

10001600
4000

. We can find

x⃗1 =

0.4 0 0.8
0.3 0.9 0.1
0.3 0.1 0.1

10001600
4000

 =

36002140
860


and

x⃗2 =

0.4 0 0.8
0.3 0.9 0.1
0.3 0.1 0.1

36002140
860

 =

21283092
1380


for the population distributions for times t = 1 and t = 2. Notice that in each time step,
the total population remains constant:

1000 + 1600 + 4000 = 3600 + 2140 + 860 = 2128 + 3092 + 1380 = 6600 people.

If we want to find x⃗10, we can compute

x⃗10 = A10x⃗0 =

0.4 0 0.8
0.3 0.9 0.1
0.3 0.1 0.1

10  100
1600
4000

 ≈

1233.890
4455.635
910.475

 ≈

12344456
910

 .

If we want to find lim
t→∞

x⃗t, we will need to find the steady state vector. Since a steady state

vector is an eigenvector for the eigenvalue of 1, we can find the nullspace of A− I3. We set
up the augmented matrix −0.6 0 0.8 0

0.3 −0.1 0.1 0
0.3 0.1 −0.9 0


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and use row operations r1 → 10r1, r2 → 10r2 and r3 → 10r3 to make it less horrible to look
at: −6 0 8 0

3 −1 1 0
3 1 −9 0

 .

The reduced row echelon form is 1 0 −4/3 0
0 1 −5 0
0 0 0 0


and so we have xy

z

 = r

4/35
1

 ,

for some parameter r. Thus x⃗s =

4/35
1

 is a steady state vector. BUT! It is not going to

be lim
t→∞

x⃗t. That is because we want the steady state vector to also have the correct total

population. Recall that the total population remains 6600 in our scenario. So we will have
to adjust the parameter r to give us a steady state vector with a total population of 6600.

(4/3)r + 5r + r = 6600,

solving for r yields
r = 900.

So the steady state vector we want is

x⃗s = 900

4/35
1

 =

12004500
900

 .

This steady state vector is the limit of x⃗t as t → ∞. Notice that by the time we get

x⃗10 ≈

12344456
910

 ,

we are already fairly close to this limit.

The above is an example of a dynamical system. A dynamical system is any process
wherein something’s state is changed over time. They come in two flavors: discrete time and
continuous time. We will primarily focus on discrete dynamical systems.
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Example 22. Let’s consider the dynamical system with variables xt and yt, and the relation

xt+1 = 2.5xt − 3yt

yt+1 = xt − yt.

Then we can write the system as a matrix equation:[
xt+1

yt+1

]
=

[
2.5 −3
1 −1

]
︸ ︷︷ ︸

A

[
xt

yt

]
.

Note that A here is not a Markov matrix! So we can’t necessarily take for granted that A
has an eigenvector of 1 (it still could, but we would need to find that out ourselves).

Let’s start with an initial state

[
x0

y0

]
=

[
70
30

]
. Then we can see:

[
x1

y1

]
= A

[
70
30

]
=

[
85
40

]
[
x2

y2

]
= A

[
85
40

]
=

[
92.5
45

]
[
x3

y3

]
= A

[
92.5
45

]
=

[
96.25
47.5

]
.

It appears that the state vectors are getting closer and closer to

[
100
50

]
. Can we confirm this?

One thing that we can do is to see if lim
t→∞

At exists. If this limit does exist, then lim
t→∞

[
xt

yt

]
=(

lim
t→∞

At
)[x0

y0

]
.

We can use the diagonalization to help us computeAt. We will need to find the eigenvalues
of A. We can take the characteristic polynomial

cA(s) = det

[
2.5− s −3

1 −1− s

]
= (2.5− s)(−1− s) + 3 = s2 − 1.5s+ 0.5.

We can use the quadratic formula to find that cA(s) has a root of s = 1 and a root of s = 0.5
Then we can write a diagonalization for A as[

2.5 −3
1 −1

]
︸ ︷︷ ︸

A

= P

[
1 0
0 0.5

]
︸ ︷︷ ︸

D

P−1,
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where we still have yet to find P . But what we have is already enough to know that lim
t→∞

At

exists! Because

lim
t→∞

At = lim
t→∞

(
P

[
1 0
0 0.5

]
P−1

)t

= lim
t→∞

P

[
1 0
0 0.5

]t
P−1

= lim
t→∞

P

[
1t 0
0 0.5t

]
P−1 = P

[
1 0
0 0

]
P−1.

So all we need to do is find P and plug it into the above formula. So we need to find
eigenvectors for the eigenvalues 1 and 0.5.

To find an eigenvector for 1, we need a vector in the nullspace of A− I2. We can set up
the augmented matrix [

1.5 −3 0
1 −2 0

]
which has reduced row echelon form [

1 −2 0
0 0 0

]
.

Thus a parameterization for the solution set is[
x
y

]
= t

[
2
1

]
,

and we can take

[
2
1

]
as our eigenvector. After doing a similar process to find the nullspace

of A− 0.5I2, we get

[
3
2

]
as an eigenvector for 0.5.

So now we can assemble

P =

[
2 3
1 2

]
,

and so using the above formula,

lim
t→∞

At =

[
2 3
1 2

] [
1 0
0 0

] [
2 3
1 2

]−1

=

[
2 3
1 2

] [
1 0
0 0

] [
2 −3
−1 2

]
=

[
4 −6
2 −3

]
.

Finally, we can use lim
t→∞

At =

[
4 −6
2 −3

]
to find the limit of

[
xt

yt

]
given the initial state vector[

x0

y0

]
=

[
70
30

]
:

lim
t→∞

[
xt

yt

]
=
(
lim
t→∞

At
)[x0

y0

]
=

[
4 −6
2 −3

] [
70
30

]
=

[
100
50

]
,

which matches the initial observation!
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Remark 2. Note here that as long as every eigenvalue of A is inside the interval (−1, 1]
(that is, the numbers x such that −1 < x ≤ 1), then lim

t→∞
At will exist. That is because only

for numbers inside this interval will lim
t→∞

xt will exist. Specifically,

lim
t→∞

xt =

{
0 if − 1 < x < 1

1 if x = 1
.

By contrast, lim
t→∞

(−1)t does not exist because the powers of −1 bounce back and forth

between −1 and 1, and do not converge to anything. And if x > 1, then lim
t→∞

xt will diverge

to ∞, and if x < −1, then lim
t→∞

xt will also diverge, flipping between positive and negative

numbers of greater and greater absolute value.
CAUTION: Even if lim

t→∞
At does not exist, the limit lim

t→∞
(Atv⃗) CAN still exist, as long as

v⃗ is a linear combination of eigenvectors with eigenvalues in the interval (−1, 1].
For example, suppose A has three eigenvalues: 0.1, 1, and 10. Then lim

t→∞
At does not

exist, because A has an eigenvalue of 10, which is outside the required interval (−1, 1]. But
since 0.1 is an eigenvalue, that means there is some vector v⃗ such that Av⃗ = 0.1v⃗. That
means that A2v⃗ = 0.01v⃗, A3v⃗ = 0.001v⃗, and so on. Taking the limit, we get

lim
t→∞

(Atv⃗) = lim
t→∞

0.1tv⃗ = 0⃗.

Furthermore, since 1 is an eigenvalue, there is a vector u⃗ such that Au⃗ = u⃗. And so A2u⃗ = u⃗,
and A3u⃗ = u⃗. So

lim
t→∞

(Atu⃗) = u⃗.

Finally, we can also do this for any linear combination of v⃗ and u⃗:

lim
t→∞

(At(av⃗ + bu⃗)) = a lim
t→∞

(Atv⃗) + b lim
t→∞

(Atu⃗) = bu⃗.

One of the more interesting eigenvalues that can appear in a dynamical system is −1:

Example 23. Suppose we have the following dynamical system:

xt+1 = −5.5xt + 3yt

yt+1 = −9xt + 5yt

. When we can write the system as a matrix equation:[
xt+1

yt+1

]
=

[
−5.5 3
−9 5

]
︸ ︷︷ ︸

A

[
xt

yt

]
.
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Then let us consider the initial state vector

[
x0

y0

]
=

[
60
100

]
. Then we can see the states

progress as follows: [
x1

y1

]
= A

[
60
100

]
=

[
−30
−40

]
[
x2

y2

]
= A

[
−30
−40

]
=

[
45
70

]
[
x3

y3

]
= A

[
45
70

]
=

[
−37.5
−55

]
[
x4

y4

]
= A

[
−37.5
−55

]
=

[
41.25
62.5

]
[
x5

y5

]
= A

[
41.25
62.5

]
=

[
−39.375
−58.75

]
.

These states certainly do not seem to be converging to anything. But even though it takes
a bit longer to notice the pattern than last time, it seems the even-numbered states are

converging to

[
40
60

]
and the odd-numbered states are converging to

[
−40
−60

]
. Let’s try to

verify this.
We will begin by finding the eigenvalues of A. We have the characteristic polynomial

cA(s) = det

[
−5.5− s 3

−9 5− s

]
= (−5.5− s)(5− s) + 27 = s2 + 0.5s− 0.5.

Using the quadratic formula reveals that the eigenvalues are −1 and 0.5. Here we run into
a problem: −1 is outside the required interval of (−1, 1], so lim

t→∞
At does not exist. To see

why in more detail, we have a diagonalization for A:[
−5.5 3
−9 5

]
= P

[
−1 0
0 0.5

]
P−1,

so [
−5.5 3
−9 5

]t
= P

[
(−1)t 0
0 0.5t

]
P−1,

but lim
t→∞

(−1)t does not exist. But there is a way to rescue the situation! Even though

lim
t→∞

(−1)t does not exist, we can break this sequence up into two branches: an even branch

and an odd branch. We have

lim
t→∞

(−1)2t = 1

lim
t→∞

(−1)2t+1 = −1
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because the even powers of −1 are all 1 (so that sequence converges to 1) and all the odd
powers of −1 are −1, so the odd sequence converges to −1.

So even though lim
t→∞

At does not exist, the limits lim
t→∞

A2t and lim
t→∞

A2t+1 both exist, and

we can find those:

lim
t→∞

A2t = lim
t→∞

P

[
(−1)2t 0

0 0.52t

]
P−1 = P

[
1 0
0 0

]
P−1,

lim
t→∞

A2t+1 = lim
t→∞

P

[
(−1)2t+1 0

0 0.52t

]
P−1 = P

[
−1 0
0 0

]
P−1.

Now all we need is to find P and we will have our limits. We need to find eigenvectors for
the eigenvalues of −1 and 0.5. So we need to compute the nullspaces of A+I2 and A−0.5I2.
For A+ I2, we get the augmented matrix[

−4.5 3 0
−9 6 0

]
which has reduced row echelon form [

1 −2/3 0
0 0 0

]
,

so a parameterization for the solution set is[
x
y

]
= t

[
2/3
1

]
.

Choosing t = 3 allows us to pick an eigenvector without any fractions:

[
2
3

]
. A similar process

for A− 0.5I2 yields an eigenvector of

[
1
2

]
for the eigenvalue 0.5. Thus we can construct P as

P =

[
2 1
3 2

]
and so using the formulae above:

lim
t→∞

A2t =

[
2 1
3 2

] [
1 0
0 0

] [
2 1
3 2

]−1

=

[
2 1
3 2

] [
1 0
0 0

] [
2 −1
−3 2

]
=

[
4 −2
6 −3

]
,

lim
t→∞

A2t+1 =

[
2 1
3 2

] [
−1 0
0 0

] [
2 1
3 2

]−1

=

[
2 1
3 2

] [
−1 0
0 0

] [
2 −1
−3 2

]
=

[
−4 2
−6 3

]
.

Now we can compute the limits of the even-numbered subsequence and the odd-numbered

subsequence of

[
xt

yt

]
, as follows

lim
t→∞

[
x2t

y2t

]
=
(
lim
t→∞

A2t
)[x0

y0

]
=

[
4 −2
6 −3

] [
60
100

]
=

[
40
60

]
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and

lim
t→∞

[
x2t+1

y2t+1

]
=
(
lim
t→∞

A2t+1
)[x0

y0

]
=

[
−4 2
−6 3

] [
60
100

]
=

[
−40
−60

]
,

which matches the observation from above!
Note that in this example, A has no steady state vector because 1 is not an eigenvalue

of A. But instead, notice that the eigenvector

[
2
3

]
for −1 exhibits a behavior similar to a

steady state vector: A

[
2
3

]
=

[
−2
−3

]
and A

[
−2
−3

]
=

[
2
3

]
, so an initial state of

[
2
3

]
will end up

bouncing back and forth between two states forever. This makes

[
2
3

]
a periodic state, with

a cycle length of 2, because it takes the vector two turns to get back where it started.

A natural question is to then ask: Can there be periodic states with a higher cycle length?
And the answer is yes! But to understand them we will first have to learn about complex
numbers, coming up after the midterm!
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