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TOPICS

Notation: This class introduces the following mathematical notation that might be new:

1. R: The set of all real numbers. R includes numbers like 0, 1, π, −e−123, and every

other real number you can think of.

2. ∈: “In.” For example “π ∈ R” means “π is in R.”

3. Set notation: We use curly brackets {} to denote sets of things like numbers, vectors,

etc. For example, {0, 1} is the set that contains just the number 0 and the number

1. We can also use a colon (or vertical line) to add more description to the set: for

example {x ∈ R : x > π} or {x ∈ R|x > π} both mean the set of all real numbers that

are greater than π.

4. ⊆:“Subset.” Used when one set is contained in another set. Specifically, “A ⊆ B”

means “everything that’s in A is also in B.” For example {0, 1, π,−e−123} ⊆ R.

5. R2: The plane. This is the set of all vector that look like

a
b

 where a and b are both

in R. For example,

1
2

 ∈ R2.

6. Rn: n-dimensional vector space, where n is any positive whole number. This comprises

vectors of the form



a1

a2
...

an


where a1, . . . , an ∈ R. For example,



0

1

π

−e−123


∈ R4.

Definitions: 1: system of linear equations, 2: homogeneous, 3: solution set, 4: dot

product & magnitude, 5: projection, 6: matrix, 7: row-operations, 8: row-echelon & reduced

row-echelon form, 9: basic & free variables, 10: rank, 11: transpose, 12: inverse, 13: de-

terminant, 14: elementary matrix, 15: linear combination, 16 span, 17 linear independence
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& linear independence, 18: vector space, 19 basis, 20: null space & nullity, 21: column

& row space, 22: image, 23: orthogonal & orthonormal basis, 24: Fourier expansion, 25:

orthogonal matrix, 26: counterexample

Definition 1. Linear equation: A linear equation is an equation involving some vari-

ables (like x1, x2, and x3 for example) where the variables can be multiplied by numbers in

R and can be added to each other, but no other operations (like multiplying the variables

by each other, raising a variable to a power, exponentiation, logarithms, trig functions, etc.)

are allowed.

For example, 5x− 7y + 11z = 13, x1 − x2 + 1000x3 − 999x4 + x5 = 0, and a− b+ c = 10

are linear equations, but xy − z = 9, x2 − 2y = 5, ln(xy) − cos(x + 5z) = 0 are not linear

equations.

A system of linear equations is a set of multiple linear equations.

Definition 2. Homogeneous: A system of linear equations

a1,1x1 + · · ·+ a1,nxn = b1

...

am,1x1 + · · ·+ am,nxn = bm

is homogeneous if bi = 0 for all 1 ≤ i ≤ m.

For example,

−x+ 13y = 0

5x− 3y = 0
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is a homogenous system of linear equations, while

−x+ 13y = 10

5x− 3y = −2

is a non-homogeneous system of linear equations.

Definition 3. Solution set: Given a system of linear equations

a1,1x1 + · · ·+ a1,nxn = b1

...

am,1x1 + · · ·+ am,nxn = bm,

the solution set to the system is the set of all solutions to the system (written as vectors
x1

...

xn

 ∈ Rn). It is possible for a solution set to be empty (i.e. the system has no solutions),

have 1 vector, or have ∞ vectors.

Definition 4. Dot Product and Magnitude Given two vectors v⃗ =


v1
...

vn

 and u⃗ =


u1

...

un


in Rn, the dot product, denoted v⃗ · u⃗, is

v1u1 + · · · vnun.
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The magnitude (aka length) of v⃗, denoted ∥v⃗∥, is
√
v⃗ · v⃗. In other words,

∥v⃗∥ =
√

v21 + · · · v2n.

The dot product can be used to calculate the cosine of the angle θ between two vectors

u⃗ and v⃗ in Rn, with the following formula:

cos(θ) =
u⃗ · v⃗

∥u⃗∥∥v⃗∥
.

In particular, this means that u⃗ and v⃗ are perpendicular if and only if u⃗ · v⃗ = 0.

Definition 5. Projection: Given two vectors v⃗, u⃗ ∈ Rn, the projection of v⃗ onto u⃗ is

proju⃗(v⃗) =
v⃗ · u⃗
u⃗ · u⃗

· u⃗.

Definition 6. Matrix: An m×n matrix is an arrangement of real numbers into a rectangle

consisting of m rows and n columns. For example,

2 3 5

7 11 13

 is a 2×3 matrix. The (i, j)-

entry of a matrix is the number in the matrix’s ith row and jth column. If the matrix is given

a name, like M , then this entry can also be denoted as Mi,j.

A matrix is square if m = n, which means there are as many rows as there are columns.

Special kinds of matrices are the zero matrix, which is a matrix whose every entry is

0, and the n× n identity matrix, denoted In, whose (i, j)-entry is 1 if i = j and 0 if i ̸= j.

For example,

I3 =


1 0 0

0 1 0

0 0 1


is the 3× 3 identity matrix.

Matrices can be added, scalar multiplied, and multiplied.
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1. Addition: Two matrices A and B can be added if they have they exact same rows

and columns as each other. In this case, (A+B)i,j = Ai,j +Bi,j. For example,

 1 0 3 9

−10 15 14 2

+

6 7 1 9

3 −6 4 4

 =

 7 7 4 18

−7 9 18 6

 .

2. Scalar Multiplication: Any matrix A can be multiplied by any scalar s ∈ R. In this

case, (sA)i,j = s ∗ Ai,j. For example,

3 ∗

 1 0 3 9

−10 15 14 2

 =

 3 0 9 27

−30 45 42 6

 .

3. Multiplication: If A is an m× n matrix and B is an r × s matrix then the product

AB can only exist if n = r (in other words, if the number of columns of A is the

same as the number of rows of B). If AB exists, then it will be an m× s matrix and

(AB)i,j =
n∑

k=1

ai,kbk,j.

For example, take

A =

[
1 2 3 4

]
and

B =



0

−5

3

15


.

Then A is 1 × 4 and B is 4 × 1, so AB exists and is a 1 × 1 matrix. In this case,

multiplying a row matrix to a column matrix is like taking the dot product: AB =[
1 ∗ 0 + 2 ∗ (−5) + 3 ∗ 3 + 4 ∗ 15

]
=

[
59

]
.
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For a more complex example, we can take

A =

 1 0 3 9

−10 15 14 2


and

B =



4 8 0

1 6 −2

0 0 0

1 5 9


.

In this case, A is 2× 4 and B is 4× 3, so AB exists and will be a 2× 3 matrix. Notice

in this particular case BA does NOT exist.

We can calculate the (i, j)-entry of AB by multiplying the ith row of A to the jth

column of B. So for example, the (1, 1)-entry of AB is

[
1 0 3 9

]


4

1

0

1


= 1 ∗ 4 + 0 ∗ 1 + 3 ∗ 0 + 9 ∗ 1 = 13.

Or the (2, 3)-entry of AB is

[
−10 15 14 2

]


0

−2

0

9


= −10 ∗ 0 + 15 ∗ (−2) + 14 ∗ 0 + 2 ∗ 9 = −12.
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In total,

 1 0 3 9

−10 15 14 2




4 8 0

1 6 −2

0 0 0

1 5 9


=

 13 53 81

−23 20 −12

 .

CAUTION: It not guaranteed that AB will be equal to BA, even if both products exist.

Definition 7. Row Operations: Given a matrixM , there are three kinds of row operations

we can perform on M :

1. Swap the positions of two rows in a matrix. This is denoted ri ↔ rj. For example, if

M =


0 1 5 6

1 2 3 4

0 0 0 0

 ,

then the row operation r1 ↔ r2 swaps the positions of rows 1 and 2, giving us


1 2 3 4

0 1 5 6

0 0 0 0

 .

Multiply a row by a nonzero number. This is denoted ri → sri. For example, if

M =


0 1 5 6

1 2 3 4

0 0 0 0

 ,
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then the row operation r2 → 3r2 multiplies the second row by 3, giving us


0 1 5 6

3 6 9 12

0 0 0 0

 .

Add a multiple of one row to another row. This is denoted ri → ri+ trj. For example,

if

M =


0 1 5 6

1 2 3 4

0 0 0 0

 ,

then the row operation r1 → r1 + 2r2 adds two times the second row to the first row,

giving us 
2 5 11 14

1 2 3 4

0 0 0 0

 .

Definition 8. Row-echelon and Reduced row-echelon form: A matrix is in row-

echelon form if the following three criteria are followed:

1. Any row that contains a nonzero entry is above any row that contains only zeroes.

2. All the leading entries are 1 (a leading entry is the leftmost nonzero entry of a row).

3. Every leading each of every row is in a column to the right of the leading entries of the

rows above it.

Furthermore, a matrix is in reduced row-echelon form if

1. Every entry above each leading entry is 0.
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For example, the following are in row-echelon form but not reduced row-echelon form:


1 2 3 4

0 1 5 6

0 0 0 0

 ,


1 2 0 4

0 1 0 6

0 0 0 1

 ,


1 0 0 4

0 0 1 6

0 0 0 1

 .

The following are in reduced row-echelon form:


1 0 3 4

0 1 5 6

0 0 0 0

 ,


1 0 0 0

0 1 0 0

0 0 0 1

 ,



1 0 0

0 1 0

0 0 1

0 0 0


.

And the following are not in row-echelon form at all:


1 2 3 4

1 1 5 6

0 0 0 0

 ,


1 2 3 4

0 9 5 6

0 0 0 0

 ,


1 2 3 4

0 0 0 0

0 1 5 6

 .

An algorithm for turning any matrix into reduced row-echelon form is Gauss-Jordan

elimination, which is the following steps:

1. Concentrate on the leftmost nonzero column of the matrix. Make sure there is a

nonzero number in the top row of this column (use a row operation to make sure there

is if there isn’t). This entry of the matrix is the current pivot position.

2. Use row operations to make every number underneath the pivot position 0.

3. Move on to the next row and repeat steps 1 and 2 until there are no columns left to

modify.

4. At this point every number underneath each leading entry should be 0. Now use the
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scalar multiplication row operation to make every leading coefficient 1.

5. At this point your matrix is in row-echelon form. To make it reduced row-echelon, use

the ri → ri + trj row operation to make every entry above each leading term 0. Now

your matrix will be in reduced row- echelon form.

A common way of solving systems of linear equations is to transform the system of equations

into a type of matrix called an augmented matrix by taking all of the coefficients. Then use

row operations to transform this augmented matrix into reduced row-echelon form.

Example 1. For example, the system of equations

x+ 3y − 2z = −18

2x+ 9y + 11z = 96

3x+ 18y + 41 = 360

can be transformed into the augmented matrix


1 3 −2 −18

2 9 11 96

3 18 41 360


We can follow along with Gauss-Jordan elimination to turn this matrix into reduced row-

echelon form.

1. We will start at the leftmost column, where the top entry is 1.

2. We will use the 1 to make the 2 and 3 underneath it into 0 by using the row operations
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r2 → r2 − 2r1 and r3 → r3 − 3r1. Then our augmented matrix becomes


1 3 −2 −18

0 3 15 132

0 9 47 414

 .

3. Now we will repeat Step 1 by concentrating on the next row, where the leading entry

is 3.

4. Repeat Step 2 by using the 3 to make the 9 underneath it 0 via the row operation

r3 → r3 − 3r2. We then have the augmented matrix


1 3 −2 −18

0 3 15 132

0 0 2 18

 .

5. Now every number beneath every leading entry is 0. We will transform each leading

term into 1 by dividing by the row operations r2 → r2/3 and r3 → r3/2. Then we get

the row-echelon matrix 
1 3 −2 −18

0 1 5 44

0 0 1 9

 .

6. Now we can turn the matrix into reduced row-echelon form by the row operations

r2 → r2−5r3, r1 → r1+2r3, and r1 → r1−3r2 in that order. Then we get the reduced

row-echelon matrix 
1 0 0 3

0 1 0 −1

0 0 1 9

 .

Then we have our solution. Recall the first column represents x, the second column represents
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y, and the third column represents z, so our solution is

x = 3

y = −1

z = 9.

Definition 9. Basic and Free Variables: If you turn a system of equations into an

augmented matrix and use row-operations to turn the augmented matrix into row-echelon

form, then any variable whose associated column has a leading term in it is a basic variable

of the system of equations. Any other variable is a free variable.

The number of free variables is equal to the dimension of the solution set of the system

of equations.

Example 2. Suppose you have the variables x1, x2, x3, x4, x5, and x6, and you have a

system of equations that you have successfully transformed into the following reduced row-

echelon form 
1 0 2 0 −3 4 14

0 1 12 0 6 7 8

0 0 0 1 4 −9 7

 .

To interpret this matrix for your solution set, recall that each column corresponds to one of

your variables. In this case, the first, second, and fourth columns have leading terms in

them, so x1, x2, and x4 are the basic variables.

That leaves x3, x5, and x6 as the free variables. Right away, the three free variables

tell you that the solution set is three-dimensional.

Set your free variables equal to its own parameter (a letter that represents a number
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from R), like r, s, and t. So

x3 = r

x5 = s

x6 = t.

Then use the rows of the augmented matrix to give you equations for x1, x2, and x4 in terms

of the parameters r, s, and t. For example, the first row of the matrix tells you

x1 + 2x3 − 3x5 + 4x6 = 14,

so

x1 = 14− 2r + 3s− 4t.

Continuing this way for x2 and x4, we get the following complete parametrization of the

solution set:

x1 = 14− 2r + 3s− 4t

x2 = 8− 12r − 6s− 7t

x3 = r

x4 = 7− 4s+ 9t

x5 = s

x6 = t.

If a system does not have any free variables, then the solution set is 0-dimensional... meaning

that there is just one solution.

Definition 10. Rank: The rank of a matrix is the number of leading terms present after
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using row operations to get the matrix into row-echelon form. For example, if

M =


1 2 3 4

0 1 5 6

2 4 6 8


then performing the row operation r3 → r3 − 2r1 gives us the matrix


1 2 3 4

0 1 5 6

0 0 0 0


which is in row-echelon form and has two leading entries (the 1 in the first row and the 1 in

the second row). Therefore, the rank of M is 2, or rank(M) = 2.

Definition 11. Transpose: Given an m × n matrix A, the transpose of A– denoted AT–

is an n×m matrix such that (AT )i,j = Aj,i, so the (i, j)-entry of AT is the (j, i)-entry of A.

For example, if

A =

1 2 3 4

5 6 7 8


then

AT =



1 5

2 6

3 7

4 8


.

So every row of A becomes a column of AT and vice versa.

Transposes satisfy the property that (AB)T = BTAT .

Definition 12. Inverse: Given a square n × n matrix A, the inverse of A is a matrix B
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such that

AB = BA = In.

When an inverse for A exists, we may write it as A−1. If A−1 exists, then A is called

invertible.

To find the inverse of A, you can follow this algorithm:

1. Set up an augmented matrix as follows:

[A | In].

2. Use the Gauss-Jordan elimination algorithm to use row operations to turn A into

reduced row-echelon form. Mimic every row operation you’re doing on the left side

onto the right side of the augmented matrix as well.

3. If A is invertible, its reduced row-echelon form will be the identity matrix In. If A’s

reduced row-echelon form is not the identity, then A is not invertible and you can stop.

4. If A is invertible, you should end up with an augmented matrix of the form

[In |B]

with the identity matrix on the left side instead of the right side. Then B = A−1.

Example 3. Let’s use the above algorithm to calculate the inverse of the matrix

A =



1 3 4 5

2 7 8 10

1 4 5 5

3 11 13 16


.
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First let’s set up the augmented matrix



1 3 4 5 1 0 0 0

2 7 8 10 0 1 0 0

1 4 5 5 0 0 1 0

3 11 13 16 0 0 0 1


and start with the three row operations

• r2 → r2 − 2r1

• r3 → r3 − r1

• r4 → r4 − 3r1.

Then we get 

1 3 4 5 1 0 0 0

0 1 0 0 −2 1 0 0

0 1 1 0 −1 0 1 0

0 2 1 1 −3 0 0 1


.

Now we can do the next two row operations

• r3 → r3 − r2

• r4 → r4 − 2r2

and get the following matrix:



1 3 4 5 1 0 0 0

0 1 0 0 −2 1 0 0

0 0 1 0 1 −1 1 0

0 0 1 1 1 −2 0 1


.

We can turn the left matrix into row-echelon form from the row operation
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• r4 → r4 − r3

and get 

1 3 4 5 1 0 0 0

0 1 0 0 −2 1 0 0

0 0 1 0 1 −1 1 0

0 0 0 1 0 −1 −1 1


.

Finally, we can get reduced row-echelon form from the three row operations

1. r1 → r1 − 5r4

2. r1 → r1 − 4r3

3. r1 → r1 − 3r2

and get 

1 0 0 0 3 6 1 −5

0 1 0 0 −2 1 0 0

0 0 1 0 1 −1 1 0

0 0 0 1 0 −1 −1 1


.

Now that the left matrix has successfully been transformed into the identity matrix via row

operations, we know that the matrix on the right is the inverse of A, so



1 3 4 5

2 7 8 10

1 4 5 5

3 11 13 16



−1

=



3 6 1 −5

−2 1 0 0

1 −1 1 0

0 −1 −1 1


.

Inverses are useful because they give us another way of solving systems of linear equations
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(if there is a unique solution). If we have a system of equations of n equations and variables

a1,1x1 + · · ·+ a1,nxn = b1

...

an,1x1 + · · ·+ an,nxn = bn

we can create the matrix equation


a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n



x1

...

xn

 =


b1
...

bn

 ,

or Ax⃗ = b⃗ for short. If A is invertible, we can find the solution x⃗ by multiplying both sides

of the equation by A−1: we get A−1Ax⃗ = A−1⃗b, so x⃗ = A−1⃗b.

FACT: The inverse of a 2× 2 matrix

a b

c d

 is
1

ad− bc

 d −b

−c a

.
Example 4. Consider the system of equations

5x+ 3y = 2

3x+ 2y = 3.

We get the matrix equation 5 3

3 2


x
y

 =

2
3

 .
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The matrix

5 3

3 2

 has inverse

 2 −3

−3 5

, so multiplying both sides by the inverse yields

x
y

 =

 2 −3

−3 5


2
3

 =

−5

9


as the solution.

This brings us to an important theorem: Theorem 2.46 in the textbook.

Theorem 2.46. Let A be an n× n square matrix, and let x⃗ and b⃗ be n× 1 vectors. Then

the following statements are equivalent:

1. rank(A) = n.

2. A can be transformed into In by elementary row operations.

3. A is invertible.

4. There exists an n× n matrix C such that AC = CA = In.

5. The system Ax⃗ = b⃗ has exactly one solution.

6. The homogeneous system Ax⃗ = 0⃗ has x⃗ = 0⃗ as the only solution.

Inverses also satisfy the properties (AB)−1 = B−1A−1 and (A−1)T = (AT )−1.

Definition 13. Determinant: The determinant of a square n × n matrix A– denoted

det(A) or |A|– can be calculated recursively. To begin, the determinant of a 2 × 2 matrixa b

c d

 is ad− bc.

Then, we can define the (i, j)-minor of a matrix A– denoted minor(A)i,j– as the deter-

minant of the submatrix we get by deleting the ith row and jth column of A. Furthermore,
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we can then define the (i, j)-cofactor of A– denoted cof(A)i,j– as (−1)i+jminor(A)i,j. Then,

we can finally define

det(A) =
n∑

j=1

a1,jcof(A)1,j.

So knowing how to calculate the determinant of an n × n matrix requires knowing how to

calculate the determinant of an (n−1)× (n−1) matrix. But since we know how to calculate

the determinant of a 2× 2 matrix, we have a place to start!

Example 5. Let us use the definition to calculate the determinant of the matrix

A =


5 7 4

1 1 3

0 2 4

 .

According to the definition,

det(A) =
3∑

j=1

a1,jcof(A)1,j = 5cof(A)1,1 + 7cof(A)1,2 + 4cof(A)1,3

= 5minor(A)1,1 − 7minor(A)1,2 + 4minor(A)1,3.

Now we need to calculate minor(A)1,1, minor(A)1,2, and minor(A)1,3.

First, minor(A)1,1 is the determinant of the matrix we get from ignoring the first row and

first column of A, so it is the determinant of

1 3

2 4

. This determinant is 1 ∗ 4− 3 ∗ 2 = −2.

Second, minor(A)1,2 is the determinant of the matrix we get from ignoring the first

row and second column of A, so it is the determinant of

1 3

0 4

. This determinant is

1 ∗ 4− 3 ∗ 0 = 4.

Finally, minor(A)1,3 is the determinant of

1 1

0 2

, which is 1 ∗ 2− 1 ∗ 0 = 2.
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So putting everything together,

det(A) = 5minor(A)1,1 − 7minor(A)1,2 + 4minor(A)1,3 = 5 ∗ (−2)− 7 ∗ (4) + 4 ∗ (2) = −30.

The determinant has many useful properties.

• det(AB) = det(A) det(B).

• det(In) = 1 where In is the n× n identity matrix.

• det(Ak) = det(A)k.

• det(AT ) = det(A).

• The determinant of a matrix also gives you information about its invertibility. A matrix

A has an inverse if and only if det(A) ̸= 0. (In fact, according to the third bullet point,

det(A−1) = det(A)−1, which exists if and only if det(A) ̸= 0.)

Definition 14. Elementary matrix: An elementary matrix is a square n × n matrix E

such that multiplying any n × m matrix A by E on its left has the effect of performing a

row operation on A.

Example 6. For example the matrix

E =


0 1 0

1 0 0

0 0 1


is the elementary matrix corresponding to r1 ↔ r2 for a 3 × 3 matrix. We can observe its
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effect on A =


1 2 3

4 5 6

7 8 9

 below:

EA =


0 1 0

1 0 0

0 0 1



1 2 3

4 5 6

7 8 9

 =


4 5 6

1 2 3

7 8 9

 .

In general, you can always build an elementary matrix for a given row operation by per-

forming that row operation on the identity matrix. For example, if we want to identify the

elementary matrix that corresponds to the row operation r3 → r3 − 3r1 for 3 × 3 matrices,

we can take the identity matrix I3 =


1 0 0

0 1 0

0 0 1

 and perform r3 → r3− 3r1. We end up with


1 0 0

0 1 0

−3 0 1


as the elementary matrix.

By calculating the determinant of each elementary matrix and using the property that

det(EA) = det(E) det(A), we can determine the effect of each row operation on the de-

terminant of A.

1. ri ↔ rj: Multiplies det(A) by −1.

2. ri → sri: Multiplies det(A) by s.

3. ri → ri + trj: No effect on det(A).
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Definition 15. Linear combination: A vector v⃗ is a linear combination of the vectors

u⃗1, . . . , u⃗n if there are scalars s1, . . . , sn such that v⃗ = s1u⃗1 + · · ·+ snu⃗n.

Example 7. The vector


2

2

17

 is a linear combination of the vectors


3

6

9

,

9

7

0

, and

4

1

4


because 

2

2

17

 =


3

6

9

−


9

7

0

+ 2


4

1

4

 .

Definition 16. Span: The span of a set of vectors {v⃗1, . . . , v⃗n} is the set of all linear

combinations of v⃗1, . . . , v⃗n.

Example 8. Is


1

1

0

 ∈ span




3

9

12

 ,


6

7

13

 ,


9

0

9


? To answer this, we need to know if


1

1

0



is a linear combination of


3

9

12

,

6

7

13

, and

9

0

9


. We can set up the equation


1

1

0

 = a


3

9

12

+ b


6

7

13

+ c


9

0

9
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which can be turned into the system of linear equations

3a+ 6b+ 9c = 1

9a+ 7b+ 0c = 1

12a+ 13b+ 9c = 0

and the augmented matrix 
3 6 9 1

9 7 0 1

12 13 9 0

 .

We can begin getting this augmented matrix into reduced row-echelon form, but just after

the three row operations

1. r2 → r2 − 3r1

2. r3 → r3 − 4r1

3. r3 → r3 − r2

we get the augmented matrix 
3 6 9 1

0 −11 −27 −2

0 0 0 −2

 .

The last row of this matrix says 0a + 0b + 0c = −2, which cannot possibly be true. Thus

there is no solution to this system of equations, so we can conclude that


1

1

0

 /∈ span




3

9

12

 ,


6

7

13

 ,


9

0

9


 .

24



Math 369 Linear Algebra Midterm 1 October 10 2024

Definition 17. Linear independence and dependence: A set of vectors {v⃗1, . . . , v⃗n} is

linearly independent if the linear combination s1v⃗1 + · · · + snv⃗n results in 0⃗ only if si = 0

for all 1 ≤ i ≤ n.

On the contrary, the set is linearly dependent if s1v⃗1+ · · ·+ snv⃗n can be 0⃗ while allowing

some si ̸= 0.

Example 9. The set




3

6

9

 ,


9

7

0

 ,


4

1

4


 is linearly independent. We can verify this by

setting up the linear combination

s1


3

6

9

+ s2


9

7

0

+ s3


4

1

4

 =


0

0

0


and verifying that there is ONE solution for s1, s2, and s3: specifically that s1 = 0, s2 = 0,

and s3 = 0 is the only solution.

We can make the augmented matrix


3 9 4 0

6 7 1 0

9 0 4 0

 .

We can turn this matrix into reduced row-echelon form from the following ten row operations:

1. r2 → r2 − 2r1

2. r3 → r3 − 3r1

3. r3 → −11r3

4. r3 → r3 + 27r2
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5. r1 → r1/3

6. r2 → −r2/11

7. r3 → −r3/101

8. r2 → r2 − 7/4r3

9. r1 → r1 − 4/3r3

10. r1 → r1 − 3r2

and end up with 
1 0 0 0

0 1 0 0

0 0 1 0

 .

Therefore the only solution to this system of linear equations is s1 = 0, s2 = 0, and s3 = 0.

This means that




3

6

9

 ,


9

7

0

 ,


4

1

4


 is linearly independent.

Another useful way to think about linear dependence is that {v⃗1 . . . v⃗n} is linearly dependent

if one of the vectors v⃗i can be written as a linear combination as some of the other vectors.

And the set is linearly independent if none of the vectors in {v⃗1, . . . , v⃗n} can be written as a

linear combination of any of the others.

A more computational way you can determine linear dependence and independence of

a set of n vectors {v⃗1, . . . , v⃗n} is by computing the rank of the matrix you get by fusing

together v⃗1, . . . , v⃗n as columns. Specifically

rank[v⃗1 · · · v⃗n] = n if and only if {v⃗1, . . . , v⃗n} is linearly independent

and

rank[v⃗1 · · · v⃗n] < n if and only if {v⃗1, . . . , v⃗n} is linearly dependent.
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Definition 18. Vector Space: A vector space is a set of vectors V that satisfies the

following three criteria:

1. V ̸= ∅. (V is not the empty set, meaning V must actually contain something.)

2. V is closed under addition: if v⃗ and u⃗ are in V , then v⃗ + u⃗ ∈ V .

3. V is closed under scalar multiplication: if v⃗ ∈ V and s ∈ R, then sv⃗ ∈ V .

We have seen multiple examples of vector spaces so far:

• Rn is a vector space for all n.

• For any set of vectors {v⃗1, . . . , v⃗n}, span{v⃗1, . . . , v⃗n} is a vector space.

• The solution set of any homogeneous system of equations is a vector space.

NOTE: The solution set of a non-homogeneous system of equations is never a vector

space.

Definition 19. Basis: Given a vector space V , a basis for V is a set of vectors {v⃗1, . . . , v⃗n}

that satisfies the following two criteria:

1. {v⃗1, . . . , v⃗n} is linearly independent.

2. span{v⃗1, . . . , v⃗n} = V .

For a vector space V , every basis for V will always have the same number of vectors.

The dimension of V is the number of vectors in a basis for V .

The vector space Rn has the standard basis {e⃗1, . . . , e⃗n} where e⃗i has a 1 in the ith

entry and 0 everywhere else. For example, the standard basis for R2 is


1
0

 ,

0
1


 and

the standard basis for R3 is




1

0

0

 ,


0

1

0

 ,


0

0

1


.
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Example 10. The set


2
3

 ,

−1

10


 is a basis for R2. We can check that the set is

linearly independent because

rank

2 −1

3 10

 = 2

and we can check that the set spans R2 by setting up this system with an arbitrary vectora
b

 ∈ R2:

a
b

 = r

2
3

+ s

−1

10


and determining if there is a solution for r and s. Note that this turns into the matrix

equation a
b

 =

2 −1

3 10


r
s

 .

Since we already know that the rank of that 2 × 2 matrix is 2, Theorem 2.46 tells us that

the matrix equation has a unique solution. Since there is a solution, that means that any

vector in R2 is a linear combination of

2
3

 and

−1

10

, and so span


2
3

 ,

−1

10


 = R2.

Becuase it meets the two necessary criteria,


2
3

 ,

−1

10


 is a basis for R2.

Definition 20. Nullspace and Nullity: Given an m × n matrix A, the set of all n × 1

vectors x⃗ that satisfy the equation

Ax⃗ = 0⃗

is called the nullspace of A, denoted null(A). In set notation,

null(A) = {x⃗ ∈ Rn : Ax⃗ = 0⃗}.
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The nullspace of A is a vector space, and its dimension is called the nullity of A.

Example 11. Let’s find a basis for the nullspace of

A =


1 0 0 −6 2

0 2 0 −10 2

0 0 3 0 9

 .

The nullspace is the set of solutions to


1 0 0 −6 2

0 2 0 −10 2

0 0 3 0 9





x1

x2

x3

x4

x5


=


0

0

0

 ,

for which we can set up the augmented matrix


1 0 0 −6 2 0

0 2 0 −10 2 0

0 0 3 0 9 0

 .

This matrix is nearly in reduced row-echelon form already: all we need to do is r2 → r2/2

and r3 → r3/3 and we get 
1 0 0 −6 2 0

0 1 0 −5 1 0

0 0 1 0 3 0

 .

So x1, x2, and x3 are our basic variables and x4 and x5 are our free variables. Because we

have two free variables, we already know that the solution set is two-dimensional. We can

parametrize with x4 = s and x5 = t, and then the complete paramatrization for the solution

29



Math 369 Linear Algebra Midterm 1 October 10 2024

set is

x1 = 6s− 2t

x2 = 5s− t

x3 = −3t

x4 = s

x5 = t.

The above is a parametrization for null(A). We can construct a basis for null(A) by turning to

a different two-dimensional vector space, R2, and stealing a basis from that. The easiest thing

to do is to steal the standard basis


1
0

 ,

0
1


 and copy

s
t

 =

1
0

 and

s
t

 =

0
1

.
When

s
t

 =

1
0

,


x1

x2

x3

x4

x5


=



6

5

0

1

0



and when

s
t

 =

0
1

 we get



x1

x2

x3

x4

x5


=



−2

−1

−3

0

1


.
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Therefore 



6

5

0

1

0


,



−2

−1

−3

0

1




is a basis for null(A).

Definition 21. Column & Row Space: Given a matrix A, the column space of A,

denoted col(A), is the span of the columns of A, each treated like its own vector. The row

space of A, denoted row(A), is equal to col(AT ).

For any matrix A, dim(col(A)) = dim(row(A)) = rank(A).

Theorem (Rank-Nullity Theorem). For any m× n matrix A,

rank(A) + nullity(A) = n.

Definition 22. Image: For an m×n matrix A, the image of A, denoted img(A) is the set

of m× 1 vectors v⃗ ∈ Rm that are multiples of A: that is, there is some n× 1 vector u⃗ ∈ Rn

where v⃗ = Au⃗. In set notation,

img(A) = {v⃗ ∈ Rm : v⃗ = Au⃗ for some u⃗ ∈ Rn}.

The image of a matrix A is always the same thing as the column space of A. Therefore

dim(img(A)) = rank(A), just like the column space and row space.

Definition 23. Orthogonal & Orthonormal Basis: Let V be a vector space. An or-

thogonal basis for V is a basis B = {⃗b1, . . . , b⃗n} such that b⃗i · b⃗j = 0 for all i ̸= j. In other

words, all the vectors in the basis are perpendicular (aka orthogonal) to each other.
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Furthermore, B is an orthonormal basis if the vectors of B satisfy the additional

condition ∥bi∥ = 1 for all i. In other words, B is orthonormal if all the vectors of B are

perpendicular to each other and they all have a magnitude of 1.

Definition 24. Fourier expansion: Given an orthogonal basis B = {⃗b1, . . . , b⃗n} for a

vector space V , the Fourier expansion is a formula used to write any vector v⃗ ∈ V as a

linear combination of the basis vectors in B, as follows:

v⃗ =

(
v⃗ · b⃗1
∥⃗b1∥2

)
b⃗1 +

(
v⃗ · b⃗2
∥⃗b2∥2

)
b⃗2 + · · ·+

(
v⃗ · b⃗n
∥⃗bn∥2

)
b⃗n.

Notice that this is the exact same thing as the sum of the projections!

v⃗ = proj⃗b1(v⃗) + proj⃗b2(v⃗) + · · ·+ proj⃗bn(v⃗).

Furthermore, when B is orthonormal, we know that ∥⃗bi∥ = 1, so the Fourier exansion

simplifies to

v⃗ = (v⃗ · b⃗1)⃗b1 + (v⃗ · b⃗2)⃗b2 + · · ·+ (v⃗ · b⃗n)⃗bn.

Example 12. The set B =


5
6

 ,

−12

10


 is an orthogonal basis for R2. If we want to

write

7
9

 as a linear combination of the basis vectors, we can use the Fourier expansion

7
9

 =



7
9

 ·

5
6


∥∥∥∥∥∥∥
5
6


∥∥∥∥∥∥∥
2



5
6

+



7
9

 ·

−12

10


∥∥∥∥∥∥∥
−12

10


∥∥∥∥∥∥∥
2



−12

10

 =
89

61

5
6

+
6

244

−12

10

 .

Definition 25. Orthogonal Matrix: A square n × n matrix Q is orthogonal if the

32



Math 369 Linear Algebra Midterm 1 October 10 2024

columns of Q form an orthonormal basis of Rn, when treated like their own vectors. (It

would make more sense to call Q an orthonormal matrix, and some people do, but most

people don’t).

If Q is an orthogonal matrix, then as a result the rows of Q also form an orthogonal matrix

of Rn.

Furthermore, Q is an orthogonal matrix if and only if Q−1 = QT .

Definition 26. Counterexample: Given a false sentence “If P , then Q,” (or “P implies

Q”) a counterexample is something that satisfies the property P (the “hypothesis”) but

does not satisfy the property Q (the “conclusion”).

Example 13. The sentence “If A is a square matrix, then row(A) = col(A),” is false. A

counterexample to this claim is the matrix A =

0 1

0 0

. In this case A is indeed square, but

row(A) = span


0
1


 and col(A) = span


1
0


, so row(A) ̸= col(A).

Example 14. The sentence “If A is a square matrix, then row(A) ̸= col(A),” is false. A

counterexample to this claim is the matrix A =

1 0

0 0

. In this case A is indeed square, but

row(A) = span


1
0


 and col(A) = span


1
0


, so row(A) = col(A).
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