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Recap

In Frank’s talk, we learned about the Chow ring A(X) of a
smooth variety X . The Chow ring is Z(X)/Rat(X): the cycles
of X modulo rational equivalence.
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What is an enumeration puzzle?

Enumeration puzzles in algebraic geometry ask us to describe
the set Φ of objects of a certain type satisfying a number of
conditions. In the most common situation, we expect Φ to be
finite and we ask for its cardinality, whence the name
enumerative geometry.

E.G.: How many lines go through two points in the plane?
How many lines in P3 meet each of four given lines? How
many conics are tangent to five given conics in the plane?

(Answers:1,2,3264)

Jake Kettinger Enumerative Geometry



Enumerative
Geometry

Jake
Kettinger

What is an enumeration puzzle?

Enumeration puzzles in algebraic geometry ask us to describe
the set Φ of objects of a certain type satisfying a number of
conditions. In the most common situation, we expect Φ to be
finite and we ask for its cardinality, whence the name
enumerative geometry.

E.G.: How many lines go through two points in the plane?
How many lines in P3 meet each of four given lines? How
many conics are tangent to five given conics in the plane?

(Answers:1,2,3264)

Jake Kettinger Enumerative Geometry



Enumerative
Geometry

Jake
Kettinger

Steps to an enumeration puzzle

1. Find a parameter space H for the objects we seek.
2. Describe the Chow ring A(H ).
3. Find the classes [Zi ] ∈ A(H ) of the loci of objects

satisfying the conditions imposed.
4. Calculate the product α =

∏
[Zi ].

5. Verify that the cycle corresponding to α has correct
dimension, and investigate its geometry.
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Getting started

Let’s focus on our guiding question: given four lines
L1, . . . ,L4 ⊆ P3

k (k algebraically closed, char k = 0), how many
lines in P3

k intersect all four?

We will be following Chapter 3 of Eisenbud and Harris: 3264 &
All That Intersection Theory in Algebraic Geometry.

First, let’s come up with H . For that, we will need the help of
Grassmannians.
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Grassmannians

A Grassmannian is a projective variety whose points correspond
to vector subspaces of a certain dimension of a given vector
space.

For example: G(1, 3) is the space of 1-dimensional vector
subspaces of k3. Since every line through the origin of k3
corresponds to a point in P2, we can say
G(1, 3) = P2 = PG(0, 2).

Another: G(2, 3) is the space of 2-dimensional vector
subspaces of k3. Every plane through the origin of k3
corresponds to a line in P2, so G(2, 3) = PG(1, 2).

f : PG(1, 2) → P2 given by f (V (ax + by + cz)) = (a, b, c) is
an isomorphism.
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Step 1: Getting to know H = PG(1, 3)

We are interested in lines in P3
k :

PG(1, 3) = G(2, 4)
P
↪→ P

(∧2 k4
)
= P5

k ,

where
∧2 k4 is a

(
4
2

)
= 6-dimensional k-vector space generated

by {bi ∧ bj : bi , bj ∈ Basis(k4), i < j}.

P is the Plücker embedding : P(〈u, v〉) = [u ∧ v]. This is
well-defined and injective.
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Waiter, there’s a wedge in my product

How can we tell which elements of
∧2 k4 are in the image of

G(2, 4)? The ones that can be rewritten into simple products!

b1 ∧ b2 + b1 ∧ b3 = b1 ∧ (b2 + b3)

but
b1 ∧ b2 + b3 ∧ b4

is stuck.

How can we tell whether∑
1≤i<j≤4

pi,jbi ∧ bj

can be rewritten this way?
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The Klein Quadric

 ∑
1≤i<j≤4

pi,jbi ∧ bj

∧2

= 0

if and only if

p1,2p3,4 − p1,3p2,4 + p1,4p2,3 = 0.

So

PG(1, 3) ∼= V (p1,2p3,4 − p1,3p2,4 + p1,4p2,3) ⊆ P5
k

is a smooth quadric hypersurface (the Klein quadric).
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Step 2: The Chow ring A(PG(1, 3))

To begin, we will need to fix an arbitrary complete flag V of P3:

V = (p ∈ L ⊆ Π ⊆ P3).

We can define the following subvarieties called Schubert cycles.

Σ0,0(V) = PG(1, 3)

Σ1,0(V) = {Λ : Λ ∩ L 6= ∅}
Σ2,0(V) = {Λ : p ∈ Λ}
Σ1,1(V) = {Λ : Λ ⊆ Π}
Σ2,1(V) = {Λ : p ∈ Λ ⊆ Π}
Σ2,2(V) = {Λ : Λ = L}
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Schubert Classes

The Schubert cycles of the same type are rationally equivalent
regardless of flag. That is,

Σa,b(V) ' Σa,b(V ′).

So the Schubert class σa,b := [Σa,b] ∈ Aa+b(PG(1, 3)) is
well-defined.

The six classes σ0,0, σ1,0, σ2,0, σ1,1, σ2,1, σ2,2 freely generate
A(PG(1, 3)) as an abelian group.

The fact that they generate A comes from the fact that the
Schubert cells Σ◦

a,b form an affine stratification.
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Ring Structure

The Schubert classes follow the following multiplicative
structure:

σ2
1,0 = σ1,1 + σ2,0

σ1,0σ1,1 = σ1,0σ2,0 = σ2,1

σ1,2σ2,1 = σ2,2

σ2
1,1 = σ2

2,0 = σ2,2

σ1,1σ2,0 = 0

We will demonstrate this structure using intersection theory!
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σ2
1,1 = σ2

2,0 = σ2,2

Take two different flags: V = (p ∈ L ⊆ Π) and
V ′ = (p′ ∈ L′ ⊆ Π′).

σ2
1,1 = #(Σ1,1(V) ∩ Σ1,1(V ′)) · σ2,2 = #{Π ∩Π′} · σ2,2 = σ2,2.

σ2
2,0 = #(Σ2,0(V) ∩ Σ2,0(V ′)) · σ2,2 = #{pp′} · σ2,2 = σ2,2.
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σ2
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σ1,1σ2,0 = 0

σ1,1σ2,0 = #(Σ1,1(V) ∩ Σ2,0(V ′)) · σ2,2.

But Σ1,1(V)∩Σ2,0(V ′) comprises the lines that both contain p′

and are contained in Π. Such a line can only exist if p′ ∈ Π,
which does not hold in general. Therefore
#(Σ1,1(V) ∩ Σ2,0(V ′)) = 0 and so σ1,1σ2,0 = 0.
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σ1,0σ2,1 = σ2,2

σ1,0σ2,1 = #(Σ1,0(V) ∩ Σ2,1(V ′)) · σ2,2.

Now

Σ1,0(V) ∩ Σ2,1(V ′) = {Λ : Λ ∩ L 6= ∅, p′ ∈ Λ ⊆ Π′}.

Let q = L ∩Π′. The only choice for Λ is qp′.

Therefore #(Σ1,0(V) ∩ Σ2,1(V ′)) = 1 and so σ1,0σ2,1 = σ2,2.
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σ1,0σ2,0 = σ1,0σ1,1 = σ2,1

Σ1,0(V) ∩ Σ2,0(V ′) = {Λ : Λ ∩ L 6= ∅, p′ ∈ Λ}

= {Λ : p′ ∈ Λ ⊆ p′L} = Σ2,1(p′ ∈ L̃ ⊆ p′L)

where L̃ is any line containing p′ in p′L.

Σ1,0 ∩ Σ1,1(V ′) = {Λ : Λ ∩ L 6= ∅,Λ ⊆ Π′}

= {Λ : (L ∩Π′) ∈ Λ ⊆ Π′} = Σ2,1((L ∩Π′) ∈ L̃′ ⊆ Π′}

where L̃′ is any line containing L ∩Π′ in Π′.
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σ2
1,0 = σ1,1 + σ2,0

Σ1,0(V) ∩ Σ1,0(V ′) = {Λ : Λ ∩ L 6= ∅,Λ ∩ L′ 6= ∅}.

This is not a Schubert cycle of any flag!

New idea: σ2
1,0 = ασ1,1 + βσ2,0, solve.

(ασ1,1 + βσ2,0)σ1,1 = σ2
1,0σ1,1 = σ1,0σ2,1 = σ2,2.

Also
(ασ1,1 + βσ2,0)σ1,1 = ασ2

1,1 + 0β = ασ2,2

So α = 1. Similarly, β = 1.
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How many lines meet four given lines?

Suppose L1,L2,L3,L4 are general lines in P3. First let us
device four distinct flags V1,V2,V3,V4.

Translate the question: what is the cardinality of⋂4
i=1Σ1,0(Vi)?

That is the degree of the class σ4
1,0 ∈ A(PG(1, 3)).

σ4
1,0 = (σ1,1 + σ2,0)

2 = σ2,2 + 2 · 0 + σ2,2 = 2σ2,2.

Since σ2,2 is the class of Σ2,2 = {line}, 2σ2,2 gives us the
answer of two lines!
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Why study enumeration puzzles?

Not only are these puzzles interesting in their own right, but
they are also a great way to learn some of the more advanced
concepts in algebraic geometry!

We’ve already made use of Grassmannians and intersection
theory to uncover this Chow ring. In more advanced puzzles,
we may need more tools to uncover the correct parameter
space and to deal with “excess intersection.”
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