

New results on geproci sets

Jake Kettinger

New results on geproci sets

Jake Kettinger

5 May 2023

What is Geproci?

New results on geproci sets

Jake Kettinger

Definition

A finite set Z in \mathbb{P}^n_k is **geproci** if the projection \overline{Z} of Z from a general point P to a hyperplane $H=\mathbb{P}^{n-1}_k$ is a complete intersection in H.

Geproci stands for **ge**neral **pro**jection is a **c**omplete **i**ntersection.

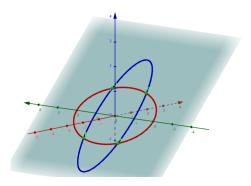
The only nontrivial examples known are for n=3. In this case a hyperplane is a plane. A reduced set of points in a plane is a complete intersection if it is the transverse intersection of two algebraic curves, like this.

For #Z = ab ($a \le b$), Z is (a,b)-geproci if \overline{Z} is the intersection of a degree a curve and a degree b curve.

Trivial Case: Coplanar Points

New results on geproci sets

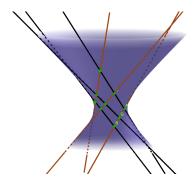
Jake Kettinger A set of coplanar points can be geproci only if it is already a complete intersection in the plane it's on.



Trivial Cases: Grids

New results on geproci sets

Jake Kettinger The easiest non-coplanar examples are grids, which are sets of points that form the intersection of two families of mutually-skew lines.



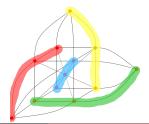
Summary of Nontrivial Cases

New results on geproci sets

Jake Kettinger **Half-Grids:** A procedure is known for creating an (a,b)-geproci half-grid for $4 \le a \le b$, but it is not known what other examples there can be.

Non-Half-Grids: Before my thesis work, only a few examples were known and there was no known way to generate more.

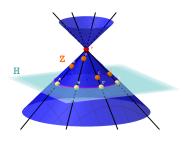
Because of this, nontrivial non-half-grids have been mysterious; it's easier to get an idea of what a half-grid is like.

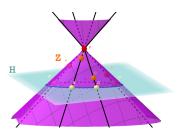


Cones and Geproci

New results on geproci sets

Jake Kettinger It is of interest when there is a cone through Z whose vertex is a general point P, and which meets H in a curve containing the projected image of Z. For Z to be (a,b)-geproci, there needs to be two such cones, of degrees a,b.





Geometry in Positive Characteristic

New results on geproci

> Jake Kettinger

> > Geometry gets weird in positive characteristic p! For example, there's Fermat's Little Theorem and there's the Freshman's Dream (aka Frobenius): $(x+y)^p=x^p+y^p$. But this weirdness makes being geproci very natural!

Cones in $\mathbb{P}^3_{\mathbb{F}_q}$ of degree a=q+1

New results on geproci sets

Jake Kettinger

Consider
$$Z=\mathbb{P}^3_{\mathbb{F}_q}$$
.

Note that
$$\#Z = \frac{q^4 - 1}{q - 1} = q^3 + q^2 + q + 1 = (q + 1)(q^2 + 1).$$

There is a unique degree q+1 cone containing Z whose vertex is at a general point $P=(a,b,c,d)\in\mathbb{P}^3_k,\ k=\overline{\mathbb{F}}_q$. This cone meets every line through two points of $\mathbb{P}^3_{\mathbb{F}_q}$ transversely. It is given by

$$\begin{vmatrix} a & b & c & d \\ a^q & b^q & c^q & d^q \\ x & y & z & w \\ x^q & y^q & z^q & w^q \end{vmatrix} = 0$$

Spreads in $\mathbb{P}^3_{\mathbb{F}_q}$

New results on geproci sets

Jake Kettinger Is there a cone of degree $b = q^2 + 1$? There is!

Each line of $\mathbb{P}^3_{\mathbb{F}_q}$ contains q+1 points. Can $\mathbb{P}^3_{\mathbb{F}_q}$ be partitioned by mutually-skew lines? Yes! Such a partition is called a **spread**, a name from combinatorics. The fibers S^1 of the Hopf fibration H map to the fibers $\mathbb{P}^1_{\mathbb{R}}$ of F, which give an example of a spread in $\mathbb{P}^3_{\mathbb{R}}$.

$$S^{3} \xrightarrow{H} S^{2}$$

$$\downarrow A \qquad \downarrow =$$

$$\mathbb{P}^{3}_{\mathbb{R}} \xrightarrow{F} \mathbb{P}^{1}_{\mathbb{C}}$$

For $\mathbb{P}^3_{\mathbb{F}_q}$, there are q^2+1 lines in the spread. The join of each line of the spread with P is our cone.

A Theorem

New results on geproci sets

> Jake Kettinger

The following result gives a new method of constructing nontrivial geproci sets.

Theorem (K-)

The set of points $\mathbb{P}^3_{\mathbb{F}_q}$ is $(q+1,q^2+1)$ -geproci in \mathbb{P}^3_k , where k is an algebraically closed field containing \mathbb{F}_q .

Note when q=2, we get a non-trivial (3,5)-geproci set! No nontrivial (3,5)-geproci set exists in characteristic 0 [CFFHMSS], so this is new.

Partial Spreads

New results on geproci sets

Jake Kettinger

Definition

A partial spread of $\mathbb{P}^3_{\mathbb{F}_q}$ with deficiency d is a set of q^2+1-d mutually-skew lines. A maximal partial spread is a partial spread of positive deficiency that is not contained in any larger partial spread.

Complements of Maximal Partial Spreads

New results on geproci sets

Jake Kettinger Maximal partial spreads give a way of producing infinitely many nontrivial non-half-grids.

Theorem (K–)

The complement of a maximal partial spread of deficiency d is a non-trivial $\{q+1,d\}$ -geproci set. Furthermore, when d>q+1, the complement is a non-trivial non-half-grid.

In 1993 and 2002, Heden proved for $q\geq 7$ that there are maximal partial spreads of every deficiency d in the interval $q-1\leq d\leq \frac{q^2+1}{2}-6$.

The field \mathbb{F}_7 and Gorenstein Configurations

New results on geproci sets

Jake Kettinger The maximal partial spreads in $\mathbb{P}^3_{\mathbb{F}_7}$ were classified by Soicher in 2000. They all comprise 45 lines, and their complements are configurations of 40 points.

Each complement is (5,8)-geproci and is a non-half-grid. Furthermore, at least four of the fifteen are different up to projective equivalence and are Gorenstein! The four configurations I tested so far have stabilizers in PGL(4,7) of different sizes (10, 20, 60, and 120) and so are not projectively equivalent.

In characteristic 0, only one non-trivial Gorenstein configuration is known up to projective equivalence, also a configuration of 40 points [CFFHMSS].

Infinitely-Near Points

New results on geproci sets

Jake Kettinger

Definition

Let X be a smooth algebraic variety and let $P \in X$. The point Q is **infinitely-near** P if Q is on the exceptional locus of the blowup of X at P. (Intuitively, Q is a tangent direction at P.)

Abuse of notation: Technically, $Q \in \mathsf{BL}_P(X)$, but it is traditional to speak of infinitely-near points as if they were points of X itself.

Geproci With Infinitely-Near Points

New results on geproci sets

Jake Kettinger

Theorem (K–)

Let char k=2. Let $Z=\{(1,0,0,0)\times 2, (0,1,0,0)\times 2, (0,0,1,0)\times 2\}$ (where $p_i\times 2$ represents an ordinary point $p_i\in \mathbb{P}^3_k$ and a point q_i infinitely near p_i), with the infinitely-near point at each ordinary point corresponding to the tangent along the line through p_i and (0,0,0,1). Then Z is a (2,3)-geproci half-grid.

No (2,3) half-grid is known in characteristic 0.

Another Example

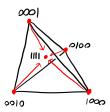
New results on geproci sets

Jake Kettinger

Theorem (K–)

Let $Z = \{(1,0,0,0) \times 2, (0,1,0,0) \times 2, (0,0,1,0) \times 2, (0,0,0,1) \times 2, (1,1,1,1)\}$, with each infinitely-near point corresponding to the line containing (1,1,1,1). Then Z is (3,3)-geproci. It is a non-trivial non-half-grid.

No nontrivial (3,3)-geproci sets are known in characteristic 0.



Future Problems

New results on geproci sets

Jake Kettinger

- 1. Do infinitely-near points provide new examples of non-trivial geproci sets in characteristic 0?
- 2. Does taking higher-order infinitely-near points provide new examples of geproci sets?
- 3. Do maximal partial spreads provide new examples of geproci sets that work in characteristic 0?
- 4. Can geproci sets give new results on spreads?

Bibliography

New results on geproci sets

Jake Kettinger

- L. Chiantini, L. Farnik, G. Favacchio, B. Harbourne, J. Migliore,
- T. Szemberg, and J. Szpond. Configurations of points in projective space and their projections. arXiv:2209.04820, 2022.
- O. Heden. Maximal partial spreads and the modular n-queen problem III. Discrete Mathematics, 243:135–150, 2002.
- O. Heden. Maximal partial spreads and the modular n-queen problem. Discrete Mathematics, 120:75–91, 1993.