
Math 369 Complex Numbers Fall 2024

1 Motivation

When studying dynamical systems, we encountered steady-state vectors and periodic
state vectors. Given a matrix A, a steady-state vector for A is an eigenvector for the
eigenvalue 1. That is, v⃗ is a steady-state vector if Av⃗ = v⃗. A vector u⃗ is periodic if there
is some t ≥ 1 such that Atu⃗ = u⃗. The smallest positive t such that Atu⃗ = u⃗ is called the
period (or order) of u⃗.

For example,

[
2.5 −3
1 −1

]
has eigenvalues 1 and 0.5. The vector

[
2
1

]
is an eigenvector for

the eigenvalue 1, so

[
2
1

]
is a steady-state vector. We can verify:[

2.5 −3
1 −1

] [
2
1

]
=

[
5− 3
2− 1

]
=

[
2
1

]
.

(Note: steady-state vectors are periodic vectors whose period is t = 1.)

The matrix

[
−5.5 3
−9 5

]
has eigenvalues −1 and 0.5. The vector

[
2
3

]
is an eigenvector for

−1. Therefore [
−5.5 3
−9 5

] [
2
3

]
=

[
−11 + 9
−18 + 15

]
=

[
−2
−3

]
.

Then we can multiply again and get[
−5.5 3
−9 5

] [
−2
−3

]
=

[
11− 9
18− 15

]
=

[
2
3

]
.

So [
−5.5 3
−9 5

]2 [
2
3

]
=

[
2
3

]
,

so

[
2
3

]
is periodic with period t = 2.

Now imagine a matrix A with a periodic vector v⃗ whose period is t = 3. For example, in
the system

A =

[
1 1
−3 −2

]
,

every vector is periodic of order t = 3. That means Av⃗ ̸= v⃗, A2v⃗ ̸= v⃗, but A3v⃗ = v⃗. That
means v⃗ is a steady-state of A3, so A3 has an eigenvalue of 1. Then A has some eigenvalue
λ whose cube is 1, but λ ̸= 1. So the powers of λ form a three-long cycle.

λ = λ4 = · · ·

1 = λ3 = λ6 = · · · λ2 = λ5 = · · ·

There is no number in R that has this property.
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2 The Complex Numbers and Cartesian Form

We will begin by introducing the imaginary unit i. The imaginary unit satisfies the equation

i2 = −1.

From this we will be able to construct the entire complex plane.

Definition 1. The complex plane is the set

C = {a+ bi : a, b ∈ R}.

That is, C is the set of all numbers of the form a+ bi where a and b are any real number.

For example, C contains the numbers 1 + i, 2 + 7i, 3 − 16i, −9, 17i, etc. Note that by
setting b = 0, a+ bi is just a, which is a real number. That means that the real numbers are
contained in the complex numbers, or R ⊆ C.

Given two complex numbers a+ bi and c+ di, we can add:

(a+ bi) + (c+ di) = a+ c+ bi+ di = (a+ c) + (b+ d)i

and we can multiply:

(a+ bi)(c+ di) = ac+ bic+ adi+ bdi2 = ac+ bdi2 + (ad+ bc)i = (ac− bd) + (ad+ bc)i .

The highlighted expressions are in Cartesian form.

Definition 2. A complex number is in Cartesian form if it is written in the form a+ bi.

That is, the expression (1+i)+(2−3i) is not in Cartesian form, but 3−2i is. The expression
(4 + 5i)(9− i) is not in Cartesian form, but 41 + 41i is.

Definition 3. The complex number a + bi has a real component a and an imaginary
component b.

Complex numbers can be represented geometrically as points in a plane whose horizontal axis
represents the real component and whose vertical axis represents the imaginary component.
Then adding complex numbers is exactly the same as adding vectors in R2, as illustrated
below.
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3 Euler’s Formula and Polar Form

We will begin by introducing Euler’s formula:

eiθ = cos(θ) + i sin(θ)

where θ is any number, representing an angle in the complex plane in radians, and e is
Euler’s constant which you may recall from calculus.

We can see where Euler’s formula comes from using Taylor series:

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · · ,

so

eiθ = 1 + iθ − θ2

2!
− i

θ3

3!
+

θ4

4!
+ i

θ5

5!
+ · · ·

which can be broken into Taylor series for cosine and sine:(
1− θ2

2!
+

θ4

4!
− · · ·

)
︸ ︷︷ ︸

cos(θ)

+i

(
θ − θ3

3!
+

θ5

5!
− · · ·

)
︸ ︷︷ ︸

sin(θ)

.

Definition 4. A complex number is in Polar form if it is written in the form reθi for some
real number θ (called the angle or argument) and some real number r ≥ 0 (called the
radius or absolute value).

The radius of a complex number a + bi is r =
√
a2 + b2 (using the Pythagorean Theorem).

The angle of a + bi requires a little bit of trig to find: θ is either arctan(b/a) if a > 0,
arctan(b/a) + π if a < 0, π/2 if a = 0 and b > 0, or 3π/2 if a = 0 and b < 0. Note that if
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a = 0 and b = 0, then a+ bi = 0 and the number 0 does not really have an angle, and so its
polar form is just 0.

Below are formulas to convert between polar and Cartesian forms:

reθi = r cos(θ) + ri sin(θ)︸ ︷︷ ︸
Polar to Cartesian

,

a+ bi =



√
a2 + b2ei arctan(b/a) if a > 0√
a2 + b2ei(arctan(b/a)+π) if a < 0√
a2 + b2e

πi
2 if a = 0 and b > 0√

a2 + b2e
3πi
2 if a = 0 and b < 0

0 if a = b = 0︸ ︷︷ ︸
Cartesian to Polar

.

Below is a geometric representation of this conversion.

Given two numbers in polar form r1e
θ1i and r2e

θ2i, we can multiply:(
r1e

θ1i
) (

r2e
θ2i
)
= r1r2e

θ1ieθ2i = r1r2e
(θ1+θ2)i ,

we can divide: (
r1e

θ1i
)
/
(
r2e

θ2i
)
= r1

r2
e(θ1−θ2)i ,

and we can raise reθi to the power of t:(
reθi
)t

= rteθti .

That is, multiplying two complex numbers ends upmultiplying their radii and adding
their angles.
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Dividing two complex numbers ends up dividing their radii and subtracting their
angles.

Raising a complex number to the power of t ends up raising the radius to the power
of t and multiplying the angle by t.

For example,(
3e

πi
6

)(
4e

πi
3

)
= 12e

πi
2 = 12 cos(π/2) + 12i sin(π/2) = 12i.

Another example, (
e

πi
4

)2
= e

πi
2 = cos(π/2) + i sin(π/2) = i.

So e
πi
4 turns out to be a square root of i. In fact, we can use polar form to find any nth

root by using t = 1/n: for example

i1/3 =
(
e

πi
2

)1/3
= e

πi
6 .

Of course, just like with the real numbers, complex numbers can have more than one nth

root. For example, −e
πi
4 is another square root of i. And e

5πi
6 and −i are the other cube

roots of i. In fact,

Theorem 1. Let z ̸= 0 be a complex number. Then z the number of nth roots of z is n.

To be able to find all n nth roots of z, we need to first understand all the nth roots of 1,
called the roots of unity.

4 Roots of Unity

Definition 5. Given some positive integer n, an nth root of unity is a complex number z
such that

zn = 1.

All roots of unity have a radius of 1 (that is, they are on the unit circle). We can use polar
coordinates to express the nth roots of unity in the following table.

n The nth roots of unity
1 1
2 1, −1

3 1, e
2πi
3 , e

4πi
3

4 1, e
2πi
4 , e

4πi
4 , e

6πi
4

5 1, e
2πi
5 , e

4πi
5 , e

6πi
5 , e

8πi
5

...
...

Below are some graphs of the 3rd, 4th, 5th, and 6th roots of unity, with the unit circle drawn
in black.
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The third roots of unity divide the unit circle into three equal parts.
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The fourth roots of unity divide the unit circle into four equal parts.
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The fifth roots of unity divide the unit circle into five equal parts.
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The sixth roots of unity divide the unit circle into six equal parts.
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Some people use the Greek letter zeta to denote the nth root of unity with the smallest
positive angle: ζn = e

2πi
n . But omega is also commonly used: ωn = e

2πi
n .

Theorem 2. Let z be any nonzero complex number and let r be one of the nth roots of z.
Then

r
(
e

2πi
n

)t
is another nth root of z. By using any number between 0 and n − 1 for t, we end up using
all n nth roots of unity.

For example, take z = 8 and let’s find the three cube roots. We know that one of the cube
roots of 8 is 2. To find the other two, we can take the number 2 and multiply it by the third
roots of unity to get

2, 2e
2πi
3 , 2e

4πi
3

as all three cube roots of 8.

For another example, take z = −81 and let’s find the four fourth roots. Now −81 does
not have any real fourth roots, so it will help to convert to polar coordinates to find one.
The number −81 has a radius of 81 and an angle of π, so we can write

−81 = 81eπi.

Now we can take a fourth root by raising this to the power of 1/4:

(−81)
1
4 =

(
81eπi

) 1
4 = 81

1
4 e

πi
4 = 3e

πi
4 .

Therefore 3e
πi
4 is one of the fourth roots of −81. To find the other three, we can take the

root we just found 3e
πi
4 , and multiply it by the fourth roots of unity 1, e

2πi
4 , e

4πi
4 , and e

6πi
4 .

We end up getting

3e
πi
4 , 3e

3πi
4 , 3e

5πi
4 , 3e

7πi
4

as all four fourth roots of −81 (after simplifying the polar forms). If we want, we can also
we can also express these answers in Cartesian coordinates as follows:(

3
√
2

2
+ i

3
√
2

2

)
,

(
−3

√
2

2
+ i

3
√
2

2

)
,

(
−3

√
2

2
− i

3
√
2

2

)
,

(
3
√
2

2
− i

3
√
2

2

)
.

5 Conjugation

Definition 6. Let z be a complex number expressed in Cartesian form as a+ bi. Then the
conjugate of z is a− bi, and it is denoted with an overline (or bar): z = a− bi .

Geometrically, z is the reflection of z over the real axis. Another geometric way to view
it is that the z has the same radius as z but the negative angle.

That is, if z = reθi, then z = re−θi .
Since reflecting over the same line twice is the same as doing nothing that means that

conjugating twice is the same as doing nothing, so z = z .
Below are some illustrations of various complex numbers and their conjugates.
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Namely, this shows that 3 + i = 3− i, and 1 + 2i = 1− 2i, and −1− i = −1 + i, and 4 = 4.
In fact, for all real numbers a, we have a = a.

Theorem 3. Let z be a complex number. Then

z + z ∈ R

and
z · z ∈ R.

Moreover, if z /∈ R, then z is the only number in C that makes the two above statements
true.

Proof. Let’s use Cartesian coordinates: z = a+ bi. Then

z + z = (a+ bi) + (a− bi) = 2a,

which is indeed in R, since a ∈ R. Likewise,

z · z = (a+ bi)(a− bi) = a2 + b2,

which is again real since a and b are both real.
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Now let z = a + bi ∈ C but z /∈ R, and suppose c + di is a complex number such that
(a + bi) + (c + di) is real and (a + bi)(c + di) is real. Then since (a + bi) + (c + di) is real,
that means that

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

has an imaginary component of 0, so b+ d = 0, so d = −b.
On the other hand, since (a+ bi)(c+ di) is real, we know that

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

has an imaginary component of 0, so ad+ bc = 0. But earlier we found d = −b, so subbing
that in gives −ab + bc = 0, so b(−a + c) = 0. Now importantly: since z /∈ R, that means
that the imaginary component of z is not zero, namely b ̸= 0. So we can divide both sides
of the equation by b and get −a + c = 0, so a = c. So since a = c and d = −b, that means
c+ di = a− bi, which is the conjugate of z.

The conjugate is useful because then we can divide complex numbers without having to
convert to polar; we can instead multiply and divide by the conjugate of the denominator.
So we can write

1

a+ bi
=

1

a+ bi
· a− bi

a− bi
=

a− bi

a2 + b2
=

a

a2 + b2
− bi

a2 + b2
.

For example:
1

1 + i
=

1− i

12 + 12
=

1

2
− 1

2
i.

Another example,

2 + 3i

4− 5i
=

(2 + 3i)(4 + 5i)

(4− 5i)(4 + 5i)
=

−7 + 22i

41
= − 7

41
+

22

41
i.

Conjugates also give us the following important theorem.

Theorem 4. Let f(x) be a polynomial with real coefficients, and let z be a root of f(x).
Then z is a root of f(x).

In order to prove this theorem, we will need the help of the following lemma:

Lemma 1. Let z1, z2 ∈ C. Then

z1 + z2 = z1 + z2

and
z1z2 = z1z2

and
zn1 = (z1)

n

for all powers n.
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Proof of Lemma 1. Let z1 = a+ bi and z2 = c+ di. Then

z1 + z2 = (a+ c) + (b+ d)i = (a+ c)− (b+ d)i = (a− bi) + (c− di) = z1 + z2.

Next,
z1z2 = (ac− bd) + (ad+ bc)i = (ac− bd)− (ad+ bc)i,

and
z1z2 = (a− bi)(c− di) = (ac− bd) + (−ad− bc)i = (ac− bd)− (ad+ bc)i,

which is the same thing we got from z1z2, so z1z2 = z1z2.
Note that as a result of the fact that z1z2 = z1z2, we have

z21 = z1z1 = (z1)
2.

Then we can use a technique called proof by induction to prove this for even higher powers:
suppose

zn1 = (z1)
n

is true for some n (like it is for n = 2). Then let’s take the n+ 1 power.

zn+1
1 = z1zn1 = z1zn1 = z1 (z1)

n = (z1)
n+1 ,

making the lemma true for n + 1 as well. (I go into more detail on proofs by induction in
the class notes for Midterm 2.)

Now we are ready to prove the theorem.

Proof of Theorem 4. Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

be a polynomial and aj ∈ R for all j. Then suppose z ∈ C and f(z) = 0, so z is a root of
f(x). Then

anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0.

Then let’s see what happens when we plug z into f(x).

f(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0.

Using Lemma 1, zj = zj for all j, so

f(z) = anzn + an−1zn−1 + · · ·+ a1z + a0.

Next, since aj ∈ R for all j, that means aj = aj, so we can write

f(z) = anzn + an−1zn−1 + · · ·+ a1z + a0.

Next, we can use Lemma 1 again to rewrite (aj)(zj) as ajzj.

f(z) = anzn + an−1zn−1 + · · ·+ a1z + a0.

Finally, we can use Lemma 1 one last time to rewrite this all as

f(z) = anzn + an−1zn−1 + · · ·+ a1z + a0 = f(z) = 0 = 0,

so we finally have
f(z) = 0

which means z is a root of f(x).
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6 Back to Spectral Theory

Now let’s take another look at the matrix from Section 1:

A =

[
1 1
−3 −2

]
.

Taking a look at the initial state vector v⃗0 =

[
400
200

]
, let’s compute some of the subsequent

states.

v⃗1 =

[
1 1
−3 −2

] [
400
200

]
=

[
400 + 200

−1200− 400

]
=

[
600

−1600

]
.

v⃗2 =

[
1 1
−3 −2

] [
600

−1600

]
=

[
600− 1600

−1800 + 3200

]
=

[
−1000
1400

]
.

v⃗3 =

[
1 1
−3 −2

] [
−1000
1400

]
=

[
−1000 + 1400
3000− 2800

]
=

[
400
200

]
= v⃗0,

and so we are back where we started after three moves! Let’s use some spectral theory to
take a look under the hood of this matrix.

Computing the characteristic polynomial for A, we get

cA(λ) = det

[
1− λ 1
−3 −2− λ

]
= (1− λ)(−2− λ) + 3 = λ2 + λ+ 1.

Using the quadratic formula, we can find the roots.

λ =
−1±

√
1− 4

2
=

−1±
√
−3

2
=

−1± i
√
3

2
.

(Note that this matches what Theorem 4 says: the two roots are conjugates of each
other!)

Notice that these numbers are a little familiar. Let’s convert them into polar coordinates:
computing the radii we get

r =

√√√√(−1

2

)2

+

(
±
√
3

2

)2

=

√
1

4
+

3

4
= 1.

And computing the angles gives us

θ = π + arctan
(
±
√
3
)
=

{
π + arctan(

√
3) = 4π/3

π + arctan(−
√
3) = 2π/3

.

So the polar forms of the eigenvalues are e
2πi
3 and e

4πi
3 . These are two of the third roots of

unity, ω3 and ω2
3! That means

A ∼
[
ω3 0
0 ω2

3

]
︸ ︷︷ ︸

D

.
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So now we know that lim
t→∞

At does not exist. This is because lim
t→∞

Dt does not exist,

because lim
t→∞

ωt
3 and lim

t→∞
ω2t
3 don’t exist. But these sequences can be broken into three

branches! That is lim
t→∞

A3t, lim
t→∞

A3t+1, and lim
t→∞

A3t+2 all exist. This is because

lim
t→∞

ω3t
3 = lim

t→∞
1t = 1,

lim
t→∞

ω3t+1
3 = lim

t→∞
1tω3 = ω3,

and
lim
t→∞

ω3t+2
3 = lim

t→∞
1tω2

3 = ω2
3.

For ω2
3, we have

lim
t→∞

(
ω2
3

)3t
= lim

t→∞
ω6t
3 = lim

t→∞
1t = 1,

lim
t→∞

(
ω2
3

)3t+1
= lim

t→∞
1tω2

3 = ω2
3,

and
lim
t→∞

(
ω2
3

)3t+2
= lim

t→∞
1tω4

3 = ω4
3 = ω3.
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