TOPICS

1. Definitions: order, linear, autonomous, normal form, separable, standard form, linear dependence/independence, homogeneous, differential operators/annihilators
(a) Order: The order of a differential equation is the highest-taken derivative in the equation.
i. The order of $6 y^{(5)}-\sin (x)\left(y^{(4)}\right)^{2}+3 e^{y} y^{\prime \prime \prime}=\arctan (x)$ is 5 .
ii. The order of $2^{x} \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}+\sin (x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=y-\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}$ is 4 .
(b) Linear: a differential equation is linear if each derivative of the dependent variable is in its own term, is not raised to a power other than 1 , and is not inside any function. That is, a DE is linear if it can be written in the form

$$
a_{n}(x) \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}+a_{n-1}(x) \frac{\mathrm{d}^{n-1} y}{\mathrm{~d} x^{n-1}}+\cdots+a_{2}(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+a_{1}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+a_{0}(x) y=g(x)
$$

where the functions $a_{i}(x)$ and $g(x)$ are functions involving only the independent variable (in this case, x).
i. Linear: $\sin ^{2}(x) \frac{\mathrm{d}^{5} y}{\mathrm{~d} x^{5}}+e^{5 x^{2}-6 x+10} \frac{\mathrm{~d}^{4} y}{\mathrm{~d} x^{4}}+\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-15 \frac{\mathrm{~d} y}{\mathrm{~d} x}+\arctan (x-1) y=\cos (x)$.
ii. Linear: $11 y+y^{\prime \prime \prime}+e^{x} y^{\prime}-18 x y^{\prime \prime}+\sin (x) y^{\prime}-12 x=9 x$. Note: it doesn't matter that the derivatives are not written in highest-to-lowest order, or that $-12 x$ appears on one side and $9 x$ appears on the other. This DE can be re-written as $y^{\prime \prime \prime}-18 x y^{\prime \prime}+\sin (x) y^{\prime}+11 y=21 x$ if we want to put it in a nicer form that is more clearly linear.
iii. Linear: $\sin (x) y^{\prime \prime}+18 x y^{\prime \prime}-\ln (x) y^{\prime}+9 y+11 x=\arctan (x)$. Note: we can re-write this differential equation as $(\sin (x)+18 x) y^{\prime \prime}-\ln (x) y^{\prime}+9 y=\arctan (x)-11 x$ in order to put it in a nicer form.
iv. NOT Linear: $y^{(4)}+y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+\sin (y)=0$. The $\sin (y)$ is an issue.
v. NOT Linear: $y\left(y^{\prime \prime}+3 y^{\prime}\right)+3\left(y^{\prime \prime \prime}\right)^{2}=\cos (x)$. Both the $y\left(y^{\prime \prime}+3 y^{\prime}\right)$ and the $\left(y^{\prime \prime \prime}\right)^{2}$ prevent it from being linear.
(c) Autonomous: a first-order DE is autonomous if it does not involve the dependent variable at all.
i. Autonomous: $\frac{\mathrm{d} y}{\mathrm{~d} x}=e^{y}$.
ii. Autonomous: $y^{\prime}-\sin (y)=10-\cos (y)$.
iii. Not Autonomous: $y^{\prime}=y+x$.
iv. Not Autonomous: $x y^{\prime}-15 x y=\sin (x)$.
(d) Normal form: a differential equation is written in normal form if the highest-order derivative is on its own side of the equal sign.
i. The DE $y^{\prime \prime \prime}+15 x y^{\prime \prime}-\sin (x) y^{\prime}+11 x y=100 x$ can be re-written into normal form as

$$
y^{\prime \prime \prime}=-15 x y+\sin (x) y^{\prime}-11 x y+100 x
$$

ii. The DE $4 x y^{\prime \prime \prime \prime}-\arcsin (x) y^{\prime \prime \prime}+10 y^{\prime \prime}-17 y=e^{x^{2}+1}$ can be written into normal form as

$$
y^{\prime \prime \prime \prime}=\frac{\arcsin (x) y^{\prime \prime \prime}-10 y^{\prime \prime}+17 y+e^{x^{2}+1}}{4 x}
$$

(e) Separable: a first-order DE is separable if it can be written in the form $y^{\prime}=h(y) g(x)$, where h is a function just involving y and g is a function just involving x.
i. Separable: $y^{\prime}=\sin (x) \cos (y)$. Here, $h(y)=\cos (y)$ and $g(x)=\sin (x)$.
ii. Separable: $2 x y^{\prime}-x^{2} y=0$. This can be re-written as $y^{\prime}=\frac{1}{2} x y$, and we can put $h(y)=y$ and $g(x)=\frac{1}{2} x$.
iii. Not Separable: $y^{\prime}=y \sin (x)+\cos (y)$
iv. Not Separable: $x y^{\prime}+x^{2} y-10 x=0$.

Separable equations can be solved using the separation of variables method, detailed later.
(f) Standard form: a first-order linear DE is in standard form if it is in the form $y^{\prime}+P(x) y=f(x)$, where $P(x)$ and $f(x)$ are functions involving only the independent variable (in this case, x).
i. The standard form of $x y^{\prime}-15 x y=\sin (x)$ is $y^{\prime}-15 y=\frac{\sin (x)}{x}$.
ii. The standard form of $y^{\prime}=-\cos (x) y+11 e^{x}$ is $y^{\prime}+\cos (x) y=11 e^{x}$.

Writing a first-order linear DE in standard form is the first step in using the integrating factors method, detailed later.
(g) Linear Dependence/Independence: a set of functions y_{1}, \ldots, y_{k} is linearly dependent if there are some constants c_{1}, \ldots, c_{k} with at least one not equalling zero such that

$$
c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{k} y_{k}=0
$$

The set y_{1}, \ldots, y_{k} are linearly independent if the ONLY way the linear combination $c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{k} y_{k}$ can be zero is if ALL of the coefficients c_{i} are zero.
i. x^{a} and x^{b} are linearly independent as long as $a \neq b$.
ii. $e^{a x}$ and $e^{b x}$ are linearly independent as long as $a \neq b$.
iii. The three functions x, x^{2}, and $x^{2}+x$ are linearly dependent, because for example

$$
1 \cdot x+1 \cdot x^{2}+(-1) \cdot\left(x^{2}+x\right)=0
$$

but the coefficients are 1,1 and -1 , which are not zero. If you removed any one of the functions from the set, then the remaining two would be linearly independent: x and x^{2} are linearly independent, x and $x^{2}+x$ are linearly independent, and x^{2} and $x^{2}+x$ are linearly independent.
iv. Any set of functions that includes 0 is automatically linearly dependent.
v. $\cos (a x)$ and $\cos (b x)$ are linearly independent as long as $a \neq b$.
vi. $\sin (a x)$ and $\sin (b x)$ are linearly independent as long as $a \neq b, a \neq 0$, and $b \neq 0$.
vii. $\cos (a x)$ and $\sin (b x)$ are linearly independent as long as $b \neq 0$.
(h) Homogeneous: a linear DE is homogenous if it can be written in the form

$$
a_{n}(x) \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}+a_{n-1}(x) \frac{\mathrm{d}^{n-1} y}{\mathrm{~d} x^{n-1}}+\cdots+a_{2}(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+a_{1}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+a_{0}(x) y=0 .
$$

Homogeneous differential equations follow the superposition principle: if y_{1}, \ldots, y_{k} are solutions, then any linear combination of y_{1}, \ldots, y_{k} are also solutions. A linear combination is a function of the form

$$
y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{k} y_{k}
$$

where c_{1}, \ldots, c_{k} are constants.
A set of n linearly independent solutions y_{1}, \ldots, y_{n} to an $n^{\text {th }}$-order linear homogeneous differential equation form a fundamental solution set: the general solution to the equation takes the form $y=c_{1} y_{1}+c_{2} y_{2}+$ $\cdots+c_{n} y_{n}$.

When an $n^{\text {th }}$-order linear differential equation is NOT homogeneous, the general solution is $y=c_{1} y_{1}+$ $c_{2} y_{2}+\cdots+c_{n} y_{n}+y_{p}$, where y_{1}, \ldots, y_{n} form the fundamental solution set of the corresponding homogeneous DE , and y_{p} is a particular solution of the DE.
(i) Differential Operators/Annihilators: the differential operator D is a function that receives the input of a function $f(x)$ and outputs its derivative $f^{\prime}(x)$. We can take powers of D to create higher-order differential operators: $D^{k}(f(x))=\frac{d^{k} f}{d x^{k}}$ for all $k \geq 0$. Note $D^{0}(f(x))=f(x)$ (the 0 th derivative). We can also form linear combinations of powers of differential operators, for example $\left(5 D^{2}+6 D+11 D^{0}\right)(y)=5 y^{\prime \prime}+6 y^{\prime}+11 y$. A linear combination of differential operators L annihilates a function $f(x)$ if $L(f(x))=0$.
i. The lowest-degree annihilator of x^{n} is $D^{n+1}: D^{n+1}$ receives a function $f(x)$ and outputs the $n+1$ derivative, so $D^{n+1}\left(x^{n}\right)=0$.
ii. $D-1$ annihilates $e^{x}:(D-1)\left(e^{x}\right)=D\left(e^{x}\right)-1\left(e^{x}\right)=e^{x}-e^{x}=0$.
iii. In general, $e^{r x}$ is annihilated by $(D-r)$ and $x^{n} e^{r x}$ is annihilated by $(D-r)^{n+1}$.
iv. $\cos (b x)$ and $\sin (b x)$ are both annihilated by $D^{2}+b^{2}:\left(D^{2}+b^{2}\right)(\cos (b x))=D^{2}(\cos (b x))+b^{2} \cos (b x)=$ $-b^{2} \cos (b x)+b^{2} \cos (b x)=0$. The same goes for $\sin (b x)$. In general, $x^{n} \cos (b x)$ and $x^{n} \sin (b x)$ are annihilated by $\left(D^{2}+b^{2}\right)^{n+1}$.
v. In general, $e^{a x} \cos (b x)$ and $e^{a x} \sin (b x)$ are annihilated by $D^{2}-2 a D+\left(a^{2}+b^{2}\right)$. Also $x^{n} e^{a x} \cos (b x)$ are $x^{n} e^{a x} \sin (b x)$ are annihilated by $\left(D^{2}-2 a D+\left(a^{2}+b^{2}\right)\right)^{n+1}$.

2. Existence and Uniqueness Theorems

There are two existence/uniqueness theorems that we've seen: one for any kind of first-order initial-value problem (IVP), and one for linear IVPs of any order.
(a) The first existence/uniqueness theorem regards first-order IVPs of the form

$$
\begin{aligned}
& \mathrm{DE}: \frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y) \\
& \text { IC }: y\left(x_{0}\right)=y_{0} .
\end{aligned}
$$

There is a unique solution to this IVP on an interval $I=\left(x_{0}-h, x_{0}+h\right)$ if there is a rectangular (possibly infinite) region R in the $x y$-plane containing I such that $f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous on R.
(b) The second existence/uniqueness theorem regards linear IVPs of the form

$$
\begin{aligned}
& \text { DE }: a_{n}(x) \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}+a_{n-1}(x) \frac{\mathrm{d}^{n-1} y}{\mathrm{~d} x^{n-1}}+\cdots+a_{2}(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+a_{1}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+a_{0}(x) y=g(x) \\
& \text { ICs }: y\left(x_{0}\right)=y_{1} \\
& \quad y^{\prime}\left(x_{0}\right)=y_{1} \\
& \quad y^{\prime \prime}\left(x_{0}\right)=y_{2} \\
& \quad \vdots \\
& \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
\end{aligned}
$$

There is a unique solution to this IVP on an interval I containing x_{0} if all of the $a_{i}(x)$'s and $g(x)$ are
continuous on I and if $a_{n}(x) \neq 0$ for any x in I.

3. Slope Fields

4. Modeling Real-World Phenomena
(a) Salt-Water Solutions
(b) Logistic Growth
(c) Newton's Law of Heating and Cooling

5. Euler's Method

If we are given a first-order IVP with the DE $y^{\prime}=f(x, y)$ and the IC $y\left(x_{0}\right)=y_{0}$, we can construct a sequence of points that approximate a solution by choosing an increment h and constructing

$$
\begin{aligned}
&\left(x_{0}, y_{0}\right) \\
&\left(x_{1}, y_{1}\right)=\left(x_{0}+h, y_{0}+h \cdot f\left(x_{0}, y_{0}\right)\right) \\
&\left(x_{2}, y_{2}\right)=\left(x_{1}+h, y_{1}+h \cdot f\left(x_{1}, y_{1}\right)\right) \\
&\left(x_{3}, y_{3}\right)=\left(x_{2}+h, y_{2}+h \cdot f\left(x_{2}, y_{2}\right)\right) \\
& \vdots \\
&\left(x_{n}, y_{n}\right)=\left(x_{n-1}+h, y_{n-1}+h \cdot f\left(x_{n-1}, y_{n-1}\right)\right)
\end{aligned}
$$

Choosing a smaller value for h results in better approximations.

6. Separation of Variables

This is a method of solving first-order separable differential equations. Given a differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=h(y) g(x),
$$

we can re-write this as

$$
\frac{\mathrm{d} y}{h(y)}=g(x) \mathrm{d} x
$$

and integrate both sides to get a solution

$$
\int \frac{\mathrm{d} y}{h(y)}=G(x)+C
$$

where $G(x)$ is an antiderivative of $g(x)$ and C is a constant.

7. Integrating Factors

This is a method of solving first-order linear differential equations.
(a) The first step is to get such an equation into standard form:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=f(x)
$$

(b) Next we want to find the integrating factor:

$$
\mu(x)=e^{\int P(x) \mathrm{d} x} .
$$

(c) Next we want to multiply both sides of the equation (still using standard form) by $\mu(x)$:

$$
\mu(x)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y\right)=\mu(x) f(x)
$$

The left side can be re-written as

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu(x) y)
$$

So our equation turns into

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu(x) y)=\mu(x) f(x) .
$$

(d) The last step is to integrate both sides.

$$
\int \frac{\mathrm{d}}{\mathrm{~d} x}(\mu(x) y) \mathrm{d} x=\int \mu(x) f(x) \mathrm{d} x
$$

and so

$$
\mu(x) y=\int \mu(x) f(x) \mathrm{d} x
$$

and we get

$$
y=\frac{\int \mu(x) f(x) \mathrm{d} x}{\mu(x)}
$$

8. Reduction of Order

If we have a second-order linear homogeneous differential equation

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

and we are given one of the solutions y_{1}, we can find an linearly independent solution y_{2} by setting $y_{2}=$ $u(x) \cdot y_{1}(x)$, plugging $u y_{1}$ in for y :

$$
a_{2}(x)\left(u y_{1}\right)^{\prime \prime}+a_{1}(x)\left(u y_{1}\right)^{\prime}+a_{0}(x)\left(u y_{1}\right)=0
$$

and solving for $u(x)$, which will give us y_{2}.
9. Auxiliary Equations Given a linear homogeneous DE with constant coefficients

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

(where the a_{i} 's are constants instead of functions) we can associate it to a polynomial auxiliary equation

$$
a_{n} m^{n}+a_{n-1} m^{n-1}+\cdots a_{2} m^{2}+a_{1} m+a_{0}=0
$$

The roots of the auxiliary equation correspond to solutions of the differential equation in the following way:
(a) If r is a real root of multiplicity 1 , we get the solution $e^{r x}$
(b) If r is a real root of multiplicity p, we get the solutions $e^{r x}, x e^{r x}, x^{2} e^{r x}, \ldots, x^{p-1} e^{r x}$.
(c) If $a+b i$ and $a-b i$ are non-real roots of multiplicity 1 , then we get the solutions $e^{a x} \cos (b x)$ and $e^{a x} \sin (b x)$.
(d) If $a+b i$ and $a-b i$ are non-real roots of multiplicity p, then we get the solutions $e^{a x} \cos (b x), x e^{a x} \cos (b x), \ldots, x^{p-1} e^{a x} \cos (b x)$ and $e^{a x} \sin (b x), x e^{a x} \sin (b x), \ldots, x^{p-1} e^{a x} \sin (b x)$.

